4 research outputs found

    Atmospheric Particles Are Major Sources of Aged Anthropogenic Organic Carbon in Marginal Seas

    No full text
    Deposition of atmospheric particulates is a major pathway for transporting materials from land to the ocean, with important implications for climate and nutrient cycling in the ocean. Here, we report the results of year-round measurements of particulate organic carbon (POC) and black carbon (BC) in atmospheric aerosols collected on Tuoji Island in the coastal Bohai-Yellow Sea of China (2019–2020) and during a cruise in the western North Pacific. Aerosol POC contents ranged from 1.9 to 11.9%; isotope values ranged from −18.8 to −29.0‰ for δ13C and −150 to −892‰ for Δ14C, corresponding to 14C ages of 1,235 to 17,780 years before present (BP). Mass balance calculations indicated that fossil carbon contributed 19–66% of the POC, with highest values in winter. BC produced from fossil fuel combustion accounted for 18–54% of the POC. “Old” BC (mean 6,238 ± 740 yr BP) was the major contributor to POC, and the old ages of aerosol POC were consistent with the 14C ages of total OC preserved in surface sediments of the Bohai-Yellow Sea and East China Sea. We conclude that atmospheric deposition is an important source of aged OC sequestered in marginal sea sediments and thus represents an important sink for carbon dioxide from the atmosphere

    Succession of marine bacteria in response to Ulva prolifera-derived dissolved organic matter

    No full text
    Increasing macroalgal blooms as a consequence of climate warming and coastal eutrophication have profound effects on the marine environment. The outbreaks of Ulva prolifera in the Yellow Sea of China occurring every summer since 2007 to present have formed the world’s largest green tide. The green tide releases huge amounts of dissolved organic matter (DOM) to the seawater, causing an organic overload. However, how marine bacteria respond to this issue and the potential impact on the marine environment are still unclear. Here, we monitored the highly temporally resolved dynamics of marine bacterial community that occur in response to Ulva prolifera-derived DOM by performing a 168-h microcosm incubation experiment. DOM inputs significantly increased bacterial abundances within 6 h, decreased bacterial diversity and triggered clear community successions during the whole period of incubation. Vibrio of Gammaproteobacteria robustly and rapidly grew over short timescales (6–24 h), with its relative abundance accounting for up to 52.5% of active bacteria. From 24 to 48 h, some genera of Flavobacteriia grew rapidly, which was more conspicuous at a higher DOM concentration than at a lower concentration. The genus Donghicola of Alphaproteobacteria was predominant at later time points (>48 h). This bacterial community succession was accompanied by significant variations in the activity of 12 different extracellular enzymes, resulting in a rapid reduction of dissolved organic carbon by 74.5% within the first 36 h. In summary, our study demonstrates rapid successions of bacterial community and extracellular enzyme activity after DOM inputs, suggesting that the bacterial response to Ulva prolifera-derived organic matter may contribute to environmental restoration and may pose a health threat due to the bloom of potential pathogenic Vibrio

    Table_1_Stable carbon isotopes of dissolved inorganic carbon in the Western North Pacific Ocean: Proxy for water mixing and dynamics.pdf

    No full text
    The uptake of atmospheric CO2 and the cycle of dissolved inorganic carbon (DIC) in the ocean are the major mechanisms and pathways controlling global climate change and carbon cycling. The stable carbon isotope (δ13C) of DIC, therefore, provides an important tracer for processes such as air-sea exchange, photosynthesis, and water dynamics in the ocean. Here, we present new δ13C-DIC data on water samples collected from a north-south transect (13°N–40°N, 150°E) in the western North Pacific (NP) Ocean in November 2019 and compare the results with those previously reported for similar transects (149.3°E) during WOCE and CLIVAR projects over the past three decades. The values of δ13C-DIC, ranging from -0.83‰ to 0.86‰, were higher in the surface waters and decreased with depth. The high δ13C-DIC values in the surface waters were influenced primarily by isotopic fractionation during air-sea exchange and photosynthesis. With depth, the movement of different water masses and mixing, as well as bathypelagic respiration in the dark water of the ocean, all play important roles in influencing the distribution and isotopic signatures of δ13C-DIC in the western NP Ocean. The δ13C-DIC values of the 0–200 m water layer varied from -0.17‰ to 0.86‰, with lower values at high latitudes, affected by the low δ13C-DIC values carried by the Oyashio Current to the Kuroshio Extension (KE) region. A downward trend was present in the δ13C-DIC signature from north to south in the North Pacific Intermediate Water (NPIW) and Pacific Deep Water (PDW) in the western NP, which reflected the remineralization of organic matter with a horizontal transport of NPIW and PDW. We found a strong 13C Suess Effect in the upper 2,000 m in the western NP Ocean, and δ13C-DIC at the surface (13C-DIC change in the surface ocean was estimated at 0.28‰ per decade between 1993 and 2019. The air-sea exchange and water mixing in the study area may have accelerated the absorption of anthropogenic CO2 in recent years, which likely caused a slightly faster rate of decrease in the δ13C-DIC from 2005–2019 than that observed from 1993–2005.</p
    corecore