719 research outputs found

    Insulin aggregation tracked by its intrinsic TRES

    Get PDF
    Time-resolved emission spectra (TRES) have been used to detect conformational changes of intrinsic tyrosines within bovine insulin at a physiological pH. The approach offers the ability to detect the initial stages of insulin aggregation at the molecular level. The data analysis has revealed the existence of at least three fluorescent species undergoing dielectric relaxation and significant spectral changes due to insulin aggregation. The results indicate the suitability of the intrinsic TRES approach for insulin studies and for monitoring its stability during storage and aggregation in insulin delivery devices

    Protein fibrillogenesis model tracked by its intrinsic time-resolved emission spectra

    Get PDF
    The excited-state kinetics of the fluorescence of tyrosine in a de novo protein fibrillogenesis model was investigated as a potential tool for monitoring protein fibre formation and complexation with glucose (glycation). In stark contrast to insulin the time-resolved emission spectra (TRES) recorded over the period of 700 hours in buffered solutions of the model with and without glucose revealed no apparent changes in Tyr fluorescence responses. This indicates the stability of the model and provides a measurement-supported basis for its use as a reference material in fluorescence studies of protein aggregation

    The effect of typhoon on particulate organic carbon flux in the southern East China Sea

    Get PDF
    Severe tropical storms play an important role in triggering phytoplankton blooms, but the extent to which such storms influence biogenic carbon flux from the euphotic zone is unclear. In 2008, typhoon Fengwong provided a unique opportunity to study the in situ biological responses including phytoplankton blooms and particulate organic carbon fluxes associated with a severe storm in the southern East China Sea (SECS). After passage of the typhoon, the sea surface temperature (SST) in the SECS was markedly cooler (∼25 to 26 °C) than before typhoon passage (∼28 to 29 °C). The POC flux 5 days after passage of the typhoon was 265 ± 14 mg C m<sup>−2</sup> d<sup>−1</sup>, which was ∼1.7-fold that (140–180 mg C m<sup>−2</sup> d<sup>−1</sup>) recorded during a period (June–August, 2007) when no typhoons occurred. A somewhat smaller but nevertheless significant increase in POC flux (224–225 mg C m<sup>−2</sup> d<sup>−1</sup>) was detected following typhoon Sinlaku which occurred approximately 1 month after typhoon Fengwong, indicating that typhoon events can increase biogenic carbon flux efficiency in the SECS. Remarkably, phytoplankton uptake accounted for only about 5% of the nitrate injected into the euphotic zone by typhoon Fengwong. It is likely that phytoplankton population growth was constrained by a combination of light limitation and grazing pressure. Modeled estimates of new/export production were remarkably consistent with the average of new and export production following typhoon Fengwong. The same model suggested that during non-typhoon conditions approximately half of the export of organic carbon occurs via convective mixing of dissolved organic carbon, a conclusion consistent with earlier work at comparable latitudes in the open ocean

    Tracking insulin glycation in real time by time-resolved emission spectroscopy

    Get PDF
    The application of time-resolved fluorescence sensing to the study of heterogenic biomolecular systems remains challenging because of the complexity of the resulting photophysics. Measuring the time-resolved emission spectroscopy (TRES) spectra can provide a more informative alternative to the modeling of the fluorescence decay that is currently employed. Here, we demonstrate this approach by monitoring real-time changes in intrinsic insulin fluorescence by TRES as a straightforward probe to directly measure kinetics of insulin aggregation and glycation. Our findings hold promise for monitoring the storage of insulin and its application in the control of diabetes and may support the development of more effective therapeutics against amyloidosis

    Intra- and Inter-Individual Variance of Gene Expression in Clinical Studies

    Get PDF
    BACKGROUND: Variance in microarray studies has been widely discussed as a critical topic on the identification of differentially expressed genes; however, few studies have addressed the influence of estimating variance. METHODOLOGY/PRINCIPAL FINDINGS: To break intra- and inter-individual variance in clinical studies down to three levels--technical, anatomic, and individual--we designed experiments and algorithms to investigate three forms of variances. As a case study, a group of "inter-individual variable genes" were identified to exemplify the influence of underestimated variance on the statistical and biological aspects in identification of differentially expressed genes. Our results showed that inadequate estimation of variance inevitably led to the inclusion of non-statistically significant genes into those listed as significant, thereby interfering with the correct prediction of biological functions. Applying a higher cutoff value of fold changes in the selection of significant genes reduces/eliminates the effects of underestimated variance. CONCLUSIONS/SIGNIFICANCE: Our data demonstrated that correct variance evaluation is critical in selecting significant genes. If the degree of variance is underestimated, "noisy" genes are falsely identified as differentially expressed genes. These genes are the noise associated with biological interpretation, reducing the biological significance of the gene set. Our results also indicate that applying a higher number of fold change as the selection criteria reduces/eliminates the differences between distinct estimations of variance

    A Man with Labile Blood Pressure

    Get PDF
    Ronald Ma and colleagues discuss the differential diagnosis and management of a patient who presented with recurrent episodes of chest discomfort, palpitations, and labile blood pressure

    Transition to meson-dominated matter at RHIC. Consequences for kaon flow

    Get PDF
    Anisotropic flow of kaons and antikaons is studied in heavy-ion collisions at CERN SPS and BNL RHIC energies within the microscopic quark-gluon string model. In the midrapidity range the directed flow of kaons v_1 differs considerably from that of antikaons at SPS energy (E_{lab} = 160 AGeV), while at RHIC energy (\sqrt{s} = 130 AGeV) the excitation functions of both, kaon and antikaon, flows coincide within the statistical error bars. The change is attributed to formation of dense meson-dominated matter at RHIC, where the differences in interaction cross-sections of kaons and antikaons become unimportant. The time evolution of the kaon anisotropic flow is also investigated. The elliptic flow of these hadrons is found to develop at midrapidity at times 3 < t < 10 fm/c, which is much larger than the nuclear passing time t^{pass} = 0.12 fm/c. As a function of transverse momentum the elliptic flow increases almost linearly with rising p_t. It stops to rise at p_t > 1.5 GeV/c reaching the saturation value v2K(pt)10v_2^K (p_t) \approx 10%.Comment: REVTEX, 14 pages, 4 figure

    HuR cytoplasmic expression is associated with increased cyclin A expression and poor outcome with upper urinary tract urothelial carcinoma

    Get PDF
    BACKGROUND: HuR is an RNA-binding protein that post-transcriptionally modulates the expressions of various target genes implicated in carcinogenesis, such as CCNA2 encoding cyclin A. No prior study attempted to evaluate the significance of HuR expression in a large cohort with upper urinary tract urothelial carcinomas (UTUCs). METHODS: In total, 340 cases of primary localized UTUC without previous or concordant bladder carcinoma were selected. All of these patients received ureterectomy or radical nephroureterectomy with curative intents. Pathological slides were reviewed, and clinical findings were collected. Immunostaining for HuR and cyclin A was performed and evaluated by using H-score. The results of cytoplasmic HuR and nuclear cyclin A expressions were correlated with disease-specific survival (DSS), metastasis-free survival (MeFS), urinary bladder recurrence-free survival (UBRFS), and various clinicopathological factors. RESULTS: HuR cytoplasmic expression was significantly related to the pT status, lymph node metastasis, a higher histological grade, the pattern of invasion, vascular and perineurial invasion, and cyclin A expression (p = 0.005). Importantly, HuR cytoplasmic expression was strongly associated with a worse DSS (p < 0.0001), MeFS (p < 0.0001), and UBRFS (p = 0.0370) in the univariate analysis, and the first two results remained independently predictive of adverse outcomes (p = 0.038, relative risk [RR] = 1.996 for DSS; p = 0.027, RR = 1.880 for MeFS). Cyclin A nuclear expression was associated with a poor DSS (p = 0.0035) and MeFS (p = 0.0015) in the univariate analysis but was not prognosticatory in the multivariate analyses. High-risk patients (pT3 or pT4 with/without nodal metastasis) with high HuR cytoplasmic expression had better DSS if adjuvant chemotherapy was performed (p = 0.015). CONCLUSIONS: HuR cytoplasmic expression was correlated with adverse phenotypes and cyclin A overexpression and also independently predictive of worse DSS and MeFS, suggesting its roles in tumorigenesis or carcinogenesis and potentiality as a prognostic marker of UTUC. High HuR cytoplasmic expression might identify patients more likely to be beneficial for adjuvant chemotherapy

    Targeting cancer addiction for SALL4 by shifting its transcriptome with a pharmacologic peptide

    Get PDF
    Sal-like 4 (SALL4) is a nuclear factor central to the maintenance of stem cell pluripotency and is a key component in hepatocellular carcinoma, a malignancy with no effective treatment. In cancer cells, SALL4 associates with nucleosome remodeling deacetylase (NuRD) to silence tumor-suppressor genes, such as PTEN. Here, we determined the crystal structure of an amino-terminal peptide of SALL4(1-12) complexed to RBBp4, the chaperone subunit of NuRD, at 2.7 Å, and subsequent design of a potent therapeutic SALL4 peptide (FFW) capable of antagonizing the SALL4-NURD interaction using systematic truncation and amino acid substitution studies. FFW peptide disruption of the SALL4-NuRD complex resulted in unidirectional up-regulation of transcripts, turning SALL4 from a dual transcription repressor-activator mode to singular transcription activator mode. We demonstrate that FFW has a target affinity of 23 nM, and displays significant antitumor effects, inhibiting tumor growth by 85% in xenograft mouse models. Using transcriptome and survival analysis, we discovered that the peptide inhibits the transcription-repressor function of SALL4 and causes massive up-regulation of transcripts that are beneficial to patient survival. This study supports the SALL4-NuRD complex as a drug target and FFW as a viable drug candidate, showcasing an effective strategy to accurately target oncogenes previously considered undruggable
    corecore