329 research outputs found

    Dilute magnetic semiconductor and half metal behaviors in 3d transition-metal doped black and blue phosphorenes: a first-principles study

    Full text link
    We present first-principles density-functional calculations for the structural, electronic, and magnetic properties of substitutional 3d transition metal (TM) impurities in two-dimensional black and blue phosphorenes. We find that the magnetic properties of such substitutional impurities can be understood in terms of a simple model based on the Hund's rule. The TM-doped black phosphorenes with Ti, V, Cr, Mn, Fe and Ni impurities show dilute magnetic semiconductor (DMS) properties while those with Sc and Co impurities show nonmagnetic properties. On the other hand, the TM-doped blue phosphorenes with V, Cr, Mn and Fe impurities show DMS properties, those with Ti and Ni impurities show half-metal properties, whereas Sc and Co doped systems show nonmagnetic properties. We identify two different regimes depending on the occupation of the hybridized electronic states of TM and phosphorous atoms: (i) bonding states are completely empty or filled for Sc- and Co-doped black and blue phosphorenes, leading to non-magnetic; (ii) non-bonding d states are partially occupied for Ti-, V-, Cr-, Mn-, Fe- and Ni-doped black and blue phosphorenes, giving rise to large and localized spin moments. These results provide a new route for the potential applications of dilute magnetic semiconductor and half-metal in spintronic devices by employing black and blue phosphorenes.Comment: 9 pages, 7 figure

    FAST observations of an extremely active episode of FRB 20201124A: II. Energy Distribution

    Full text link
    We report the properties of more than 800 bursts detected from the repeating fast radio burst (FRB) source FRB 20201124A with the Five-hundred-meter Aperture Spherical radio Telescope (FAST) during an extremely active episode on UTC September 25-28, 2021 in a series of four papers. In this second paper of the series, we mainly focus on the energy distribution of the detected bursts. The event rate initially increased exponentially but the source activity stopped within 24 hours after the 4th day. The detection of 542 bursts in one hour during the fourth day marked the highest event rate detected from one single FRB source so far. The bursts have complex structures in the time-frequency space. We find a double-peak distribution of the waiting time, which can be modeled with two log-normal functions peaking at 51.22 ms and 10.05 s, respectively. Compared with the emission from a previous active episode of the source detected with FAST, the second distribution peak time is smaller, suggesting that this peak is defined by the activity level of the source. We calculate the isotropic energy of the bursts using both a partial bandwidth and a full bandwidth and find that the energy distribution is not significantly changed. We find that an exponentially connected broken-power-law function can fit the cumulative burst energy distribution well, with the lower and higher-energy indices being 1.22±0.01-1.22\pm0.01 and 4.27±0.23-4.27\pm0.23, respectively. Assuming a radio radiative efficiency of ηr=104\eta_r = 10^{-4}, the total isotropic energy of the bursts released during the four days when the source was active is already 3.9×10463.9\times10^{46} erg, exceeding 23%\sim 23\% of the available magnetar dipolar magnetic energy. This challenges the magnetar models invoking an inefficient radio emission (e.g. synchrotron maser models).Comment: 26 pages, 7 figures, accepted for publication in Research in Astronomy and Astrophysic

    Quantum Spin Pump in S=1/2 antiferromagnetic chains -Holonomy of phase operators in sine-Gordon theory-

    Full text link
    In this paper, we propose the quantum spin pumping in quantum spin systems where an applied electric field (EE) and magnetic field (HH) cause a finite spin gap to its critical ground state. When these systems are subject to alternating electromangetic fields; (E,H)=(sin2πtT,cos2πtT)(E,H)=(\sin\frac{2\pi t}{T},\cos\frac{2\pi t}{T}) and travel along the {\it{loop}} Γloop\Gamma_{\rm{loop}} which encloses their critical ground state in this EE-HH phase diagram, the locking potential in the sine-Gordon model slides and changes its minimum. As a result, the phase operator acquires 2π2\pi holonomy during one cycle along Γloop\Gamma_{\rm{loop}}, which means that the quantized spin current has been transported through the bulk systems during this adiabatic process. The relevance to real systems such as Cu-benzoate and Yb4As3{\rm{Yb}}_4{\rm{As}}_3 is also discussed.Comment: 10 pages, 5 figures, to be published in J. Phys. Soc. Jpn. 74 (2005) no. 4. Typos corrected in the revised versio

    FAST observations of an extremely active episode of FRB 20201124A: III. Polarimetry

    Full text link
    As the third paper in the multiple-part series, we report the statistical properties of radio bursts detected from the repeating fast radio burst (FRB) source FRB 20201124A with the Five-hundred-meter Aperture Spherical radio telescope (FAST) during an extremely active episode between the 25th and the 28th of September 2021 (UT). We focus on the polarisation properties of 536 bright bursts with S/N>50\mathrm{S/N}>50. We found that the Faraday rotation measures (RMs) monotonically dropped from 579 rad m2-579 \ {\rm rad \ m^{-2}} to 605 rad m2-605 \ {\rm rad \ m^{-2}} in the 4-day window. The RM values were compatible with the values (300-300 to 900 rad m2-900\ {\rm rad \ m^{-2}} ) reported 4 month ago (Xu et al. 2022). However, the RM evolution rate in the current observation window was at least an order of magnitude smaller than the one ($\sim 500\ {\rm rad \ m^{-2}\, day^{-1}})previouslyreportedduringtherapidRMvariationphase,butisstillhigherthantheone() previously reported during the rapid RM-variation phase, but is still higher than the one (\le 1\ {\rm rad \ m^{-2} day^{-1}})duringthelaterRMnoevolutionphase.TheburstsofFRB20201124Awerehighlypolarisedwiththetotaldegreeofpolarisation(circularpluslinear)greaterthan90polarisationpositionangles(PAs),degreeoflinearpolarisation( ) during the later RM no-evolution phase. The bursts of FRB 20201124A were highly polarised with the total degree of polarisation (circular plus linear) greater than 90% for more than 90\% of all bursts. The distribution of linear polarisation position angles (PAs), degree of linear polarisation (L/I),anddegreeofcircularpolarisation(), and degree of circular polarisation (V/I)canbecharacterisedwithunimodaldistributionfunctions.Duringtheobservationwindow,thedistributionsbecamewiderwithtime,i.e.withlargerscatter,butthecentroidsofthedistributionfunctionsremainednearlyconstant.Forindividualbursts,significantPAvariations(confidencelevel5) can be characterised with unimodal distribution functions. During the observation window, the distributions became wider with time, i.e. with larger scatter, but the centroids of the distribution functions remained nearly constant. For individual bursts, significant PA variations (confidence level 5-\sigma$) were observed in 33% of all bursts. The polarisation of single pulses seems to follow certain complex trajectories on the Poincar\'e sphere, which may shed light on the radiation mechanism at the source or the plasma properties along the path of FRB propagation.Comment: 25 pages, 16 figures. Accepted by Research in Astronomy and Astrophysics (RAA

    Heterogeneous catalysis based on supramolecular association

    Full text link
    [EN] Heterogeneous catalysis is based mostly on materials built with strong covalent bonds. However, supramolecular aggregation in which individual components self-assemble due to non-covalent interactions to create a larger entity offers also considerable potential for the preparation of materials with application in catalysis. The present article provides a perspective on the use of supramolecular aggregation for the development of heterogeneous catalysts. One of the main advantages of this approach is that the preparation procedure based on spontaneous self-assembly is frequently simpler than those that require the formation of covalent bonds. The emphasis in this article has been placed on the use in the preparation of heterogeneous catalysts of not only carbon materials, particularly graphene and carbon nanotubes, but also dendrimers and organic capsules. Examples of hybrid organic-inorganic materials such as mesoporous organosilicas, metal-organic frameworks and heteropolyacids are also briefly described. The purpose is to illustrate the breadth of the field and the diverse array of possibilities already developed to apply the concepts of supramolecular association in heterogeneous catalysis.Financial support by the Spanish Ministry of Economy and Competitiveness (Severo Ochoa and CTQ2015-69153-CO2-R1) and Generalitat Valenciana (Prometeo 2017-083) is gratefully acknowledged. Prof Parvulescu thanks UEFISCDI for the Projects 121/2017 and 32PCCD1/2018.Parvulescu, VI.; García Gómez, H. (2018). Heterogeneous catalysis based on supramolecular association. Catalysis Science & Technology. 8(19):4834-4857. https://doi.org/10.1039/c8cy01295dS48344857819J.-M. Lehn , Supramolecular chemistry , Vch , Weinheim , 1995J. W. Steed , J. L.Atwood and P. A.Gale , Definition and emergence of supramolecular chemistry , Wiley Online Library , 2012Herbst, S., Soberats, B., Leowanawat, P., Stolte, M., Lehmann, M., & Würthner, F. (2018). Self-assembly of multi-stranded perylene dye J-aggregates in columnar liquid-crystalline phases. Nature Communications, 9(1). doi:10.1038/s41467-018-05018-6Würthner, F., Thalacker, C., & Sautter, A. (1999). Hierarchical Organization of Functional Perylene Chromophores to Mesoscopic Superstructures by Hydrogen Bonding and π-π Interactions. Advanced Materials, 11(9), 754-758. doi:10.1002/(sici)1521-4095(199906)11:93.0.co;2-5JELLEY, E. E. (1936). Spectral Absorption and Fluorescence of Dyes in the Molecular State. Nature, 138(3502), 1009-1010. doi:10.1038/1381009a0Wang, J., Liu, D., Zhu, Y., Zhou, S., & Guan, S. (2018). Supramolecular packing dominant photocatalytic oxidation and anticancer performance of PDI. Applied Catalysis B: Environmental, 231, 251-261. doi:10.1016/j.apcatb.2018.03.026Liebing, P., Pietrasiak, E., Otth, E., Kalim, J., Bornemann, D., & Togni, A. (2018). Supramolecular Aggregation of Perfluoroorganyl Iodane Reagents in the Solid State and in Solution. European Journal of Organic Chemistry, 2018(27-28), 3771-3781. doi:10.1002/ejoc.201800358Zhang, S. (2003). Fabrication of novel biomaterials through molecular self-assembly. Nature Biotechnology, 21(10), 1171-1178. doi:10.1038/nbt874Balzani, V., Gómez-López, M., & Stoddart, J. F. (1998). Molecular Machines. Accounts of Chemical Research, 31(7), 405-414. doi:10.1021/ar970340yBai, C., & Liu, M. (2012). Implantation of nanomaterials and nanostructures on surface and their applications. Nano Today, 7(4), 258-281. doi:10.1016/j.nantod.2012.05.002Lehn, J.-M. (2002). Toward complex matter: Supramolecular chemistry and self-organization. Proceedings of the National Academy of Sciences, 99(8), 4763-4768. doi:10.1073/pnas.072065599Lehn, J.-M. (2007). From supramolecular chemistry towards constitutional dynamic chemistry and adaptive chemistry. Chem. Soc. Rev., 36(2), 151-160. doi:10.1039/b616752gSanders, J. K. M. (1998). Supramolecular Catalysis in Transition. Chemistry - A European Journal, 4(8), 1378-1383. doi:10.1002/(sici)1521-3765(19980807)4:83.0.co;2-3A. Lützen , Supramolecular Catalysis , ed. P. W. N. M. van Leeuwen , Wiley Online Library , 2008Zhao, L., Sui, X.-L., Li, J.-Z., Zhang, J.-J., Zhang, L.-M., Huang, G.-S., & Wang, Z.-B. (2018). Supramolecular assembly promoted synthesis of three-dimensional nitrogen doped graphene frameworks as efficient electrocatalyst for oxygen reduction reaction and methanol electrooxidation. Applied Catalysis B: Environmental, 231, 224-233. doi:10.1016/j.apcatb.2018.03.020Wang, X., Liu, Q., Yang, Q., Zhang, Z., & Fang, X. (2018). Three-dimensional g-C3N4 aggregates of hollow bubbles with high photocatalytic degradation of tetracycline. Carbon, 136, 103-112. doi:10.1016/j.carbon.2018.04.059Yao, Y., Wei, X., Cai, Y., Kong, X., Chen, J., Wu, J., & Shi, Y. (2018). Hybrid supramolecular materials constructed from pillar[5]arene based host–guest interactions with photo and redox tunable properties. Journal of Colloid and Interface Science, 525, 48-53. doi:10.1016/j.jcis.2018.04.034Leung, F. C.-M., Leung, S. Y.-L., Chung, C. Y.-S., & Yam, V. W.-W. (2016). Metal–Metal and π–π Interactions Directed End-to-End Assembly of Gold Nanorods. Journal of the American Chemical Society, 138(9), 2989-2992. doi:10.1021/jacs.6b01382Lu, C., Zhang, M., Tang, D., Yan, X., Zhang, Z., Zhou, Z., … Stang, P. J. (2018). Fluorescent Metallacage-Core Supramolecular Polymer Gel Formed by Orthogonal Metal Coordination and Host–Guest Interactions. Journal of the American Chemical Society, 140(24), 7674-7680. doi:10.1021/jacs.8b03781Sun, Y., Li, S., Zhou, Z., Saha, M. L., Datta, S., Zhang, M., … Stang, P. J. (2017). Alanine-Based Chiral Metallogels via Supramolecular Coordination Complex Platforms: Metallogelation Induced Chirality Transfer. Journal of the American Chemical Society, 140(9), 3257-3263. doi:10.1021/jacs.7b10769Du, P., Jaouen, M., Bocheux, A., Bourgogne, C., Han, Z., Bouchiat, V., … Attias, A.-J. (2014). Surface-Confined Self-Assembled Janus Tectons: A Versatile Platform towards the Noncovalent Functionalization of Graphene. Angewandte Chemie, 126(38), 10224-10230. doi:10.1002/ange.201403572Georgakilas, V., Otyepka, M., Bourlinos, A. B., Chandra, V., Kim, N., Kemp, K. C., … Kim, K. S. (2012). Functionalization of Graphene: Covalent and Non-Covalent Approaches, Derivatives and Applications. Chemical Reviews, 112(11), 6156-6214. doi:10.1021/cr3000412Qu, S., Li, M., Xie, L., Huang, X., Yang, J., Wang, N., & Yang, S. (2013). Noncovalent Functionalization of Graphene Attaching [6,6]-Phenyl-C61-butyric Acid Methyl Ester (PCBM) and Application as Electron Extraction Layer of Polymer Solar Cells. ACS Nano, 7(5), 4070-4081. doi:10.1021/nn4001963Du, P., Bléger, D., Charra, F., Bouchiat, V., Kreher, D., Mathevet, F., & Attias, A.-J. (2015). A versatile strategy towards non-covalent functionalization of graphene by surface-confined supramolecular self-assembly of Janus tectons. Beilstein Journal of Nanotechnology, 6, 632-639. doi:10.3762/bjnano.6.64Chefetz, B., Deshmukh, A. P., Hatcher, P. G., & Guthrie, E. A. (2000). Pyrene Sorption by Natural Organic Matter. Environmental Science & Technology, 34(14), 2925-2930. doi:10.1021/es9912877Pan, B., & Xing, B. (2008). Adsorption Mechanisms of Organic Chemicals on Carbon Nanotubes. Environmental Science & Technology, 42(24), 9005-9013. doi:10.1021/es801777nChen, J., Chen, W., & Zhu, D. (2008). Adsorption of Nonionic Aromatic Compounds to Single-Walled Carbon Nanotubes: Effects of Aqueous Solution Chemistry. Environmental Science & Technology, 42(19), 7225-7230. doi:10.1021/es801412jPodeszwa, R. (2010). Interactions of graphene sheets deduced from properties of polycyclic aromatic hydrocarbons. The Journal of Chemical Physics, 132(4), 044704. doi:10.1063/1.3300064Peris, E. (2016). Polyaromatic N-heterocyclic carbene ligands and π-stacking. Catalytic consequences. Chemical Communications, 52(34), 5777-5787. doi:10.1039/c6cc02017hRuiz-Botella, S., & Peris, E. (2015). Unveiling the Importance of π-Stacking in Borrowing-Hydrogen Processes Catalysed by Iridium Complexes with Pyrene Tags. Chemistry - A European Journal, 21(43), 15263-15271. doi:10.1002/chem.201502948Sabater, S., Mata, J. A., & Peris, E. (2014). Immobilization of Pyrene-Tagged Palladium and Ruthenium Complexes onto Reduced Graphene Oxide: An Efficient and Highly Recyclable Catalyst for Hydrodefluorination. Organometallics, 34(7), 1186-1190. doi:10.1021/om501040xSabater, S., Mata, J. A., & Peris, E. (2014). Catalyst Enhancement and Recyclability by Immobilization of Metal Complexes onto Graphene Surface by Noncovalent Interactions. ACS Catalysis, 4(6), 2038-2047. doi:10.1021/cs5003959Wittmann, S., Schätz, A., Grass, R. N., Stark, W. J., & Reiser, O. (2010). A Recyclable Nanoparticle-Supported Palladium Catalyst for the Hydroxycarbonylation of Aryl Halides in Water. Angewandte Chemie International Edition, 49(10), 1867-1870. doi:10.1002/anie.200906166Keller, M., Collière, V., Reiser, O., Caminade, A.-M., Majoral, J.-P., & Ouali, A. (2013). Pyrene-Tagged Dendritic Catalysts Noncovalently Grafted onto Magnetic Co/C Nanoparticles: An Efficient and Recyclable System for Drug Synthesis. Angewandte Chemie International Edition, 52(13), 3626-3629. doi:10.1002/anie.201209969MISHRA, S., ARORA, S., NAGPAL, R., & SINGH CHAUHAN, S. M. (2014). Sulfonated graphenes catalyzed synthesis of expanded porphyrins and their supramolecular interactions with pristine graphene. Journal of Chemical Sciences, 126(6), 1729-1736. doi:10.1007/s12039-014-0731-8Xing, L., Xie, J.-H., Chen, Y.-S., Wang, L.-X., & Zhou, Q.-L. (2008). Simply Modified Chiral Diphosphine: Catalyst Recyclingvia Non-covalent Absorption on Carbon Nanotubes. Advanced Synthesis & Catalysis, 350(7-8), 1013-1016. doi:10.1002/adsc.200700617Che, G., Lakshmi, B. B., Fisher, E. R., & Martin, C. R. (1998). Carbon nanotubule membranes for electrochemical energy storage and production. Nature, 393(6683), 346-349. doi:10.1038/30694Zhu, Z., Su, D., Weinberg, G., & Schlögl, R. (2004). Supermolecular Self-Assembly of Graphene Sheets:  Formation of Tube-in-Tube Nanostructures. Nano Letters, 4(11), 2255-2259. doi:10.1021/nl048794tFukushima, T. (2003). Molecular Ordering of Organic Molten Salts Triggered by Single-Walled Carbon Nanotubes. Science, 300(5628), 2072-2074. doi:10.1126/science.1082289Tunckol, M., Durand, J., & Serp, P. (2012). Carbon nanomaterial–ionic liquid hybrids. Carbon, 50(12), 4303-4334. doi:10.1016/j.carbon.2012.05.017Subramaniam, K., Das, A., & Heinrich, G. (2011). Development of conducting polychloroprene rubber using imidazolium based ionic liquid modified multi-walled carbon nanotubes. Composites Science and Technology, 71(11), 1441-1449. doi:10.1016/j.compscitech.2011.05.018Chu, H., Shen, Y., Lin, L., Qin, X., Feng, G., Lin, Z., … Li, Y. (2010). Ionic-Liquid-Assisted Preparation of Carbon Nanotube-Supported Uniform Noble Metal Nanoparticles and Their Enhanced Catalytic Performance. Advanced Functional Materials, 20(21), 3747-3752. doi:10.1002/adfm.201001240Chun, Y. S., Shin, J. Y., Song, C. E., & Lee, S. (2008). Palladium nanoparticles supported onto ionic carbon nanotubes as robust recyclable catalysts in an ionic liquid. Chem. Commun., (8), 942-944. doi:10.1039/b715463aSalvo, A. M. P., La Parola, V., Liotta, L. F., Giacalone, F., & Gruttadauria, M. (2016). Highly Loaded Multi-Walled Carbon Nanotubes Non-Covalently Modified with a Bis-Imidazolium Salt and their Use as Catalyst Supports. ChemPlusChem, 81(5), 471-476. doi:10.1002/cplu.201600023Park, H. S., Choi, B. G., Yang, S. H., Shin, W. H., Kang, J. K., Jung, D., & Hong, W. H. (2009). Ionic-Liquid-Assisted Sonochemical Synthesis of Carbon-Nanotube-Based Nanohybrids: Control in the Structures and Interfacial Characteristics. Small, 5(15), 1754-1760. doi:10.1002/smll.200900128Noël, S., Léger, B., Ponchel, A., Philippot, K., Denicourt-Nowicki, A., Roucoux, A., & Monflier, E. (2014). Cyclodextrin-based systems for the stabilization of metallic(0) nanoparticles and their versatile applications in catalysis. Catalysis Today, 235, 20-32. doi:10.1016/j.cattod.2014.03.030Wyrwalski, F., Léger, B., Lancelot, C., Roucoux, A., Monflier, E., & Ponchel, A. (2011). Chemically modified cyclodextrins as supramolecular tools to generate carbon-supported ruthenium nanoparticles: An application towards gas phase hydrogenation. Applied Catalysis A: General, 391(1-2), 334-341. doi:10.1016/j.apcata.2010.07.006Jean-Marie, A., Griboval-Constant, A., Khodakov, A. Y., Monflier, E., & Diehl, F. (2011). β-Cyclodextrin for design of alumina supported cobalt catalysts efficient in Fischer–Tropsch synthesis. Chemical Communications, 47(38), 10767. doi:10.1039/c1cc13800fLéger, B., Menuel, S., Ponchel, A., Hapiot, F., & Monflier, E. (2012). Nanoparticle-Based Catalysis using Supramolecular Hydrogels. Advanced Synthesis & Catalysis, 354(7), 1269-1272. doi:10.1002/adsc.201100888Zhang, J.-J., Ge, J.-M., Wang, H.-H., Wei, X., Li, X.-H., & Chen, J.-S. (2016). Activating Oxygen Molecules over Carbonyl-Modified Graphitic Carbon Nitride: Merging Supramolecular Oxidation with Photocatalysis in a Metal-Free Catalyst for Oxidative Coupling of Amines into Imines. ChemCatChem, 8(22), 3441-3445. doi:10.1002/cctc.201601065Qi, W., Liu, W., Liu, S., Zhang, B., Gu, X., Guo, X., & Su, D. (2014). Heteropoly Acid/Carbon Nanotube Hybrid Materials as Efficient Solid-Acid Catalysts. ChemCatChem, 6(9), 2613-2620. doi:10.1002/cctc.201402270Willner, B., Katz, E., & Willner, I. (2006). Electrical contacting of redox proteins by nanotechnological means. Current Opinion in Biotechnology, 17(6), 589-596. doi:10.1016/j.copbio.2006.10.008Smalley, R. E., Li, Y., Moore, V. C., Price, B. K., Colorado, R., Schmidt, H. K., … Tour, J. M. (2006). Single Wall Carbon Nanotube Amplification:  En Route to a Type-Specific Growth Mechanism. Journal of the American Chemical Society, 128(49), 15824-15829. doi:10.1021/ja065767rJasti, R., Bhattacharjee, J., Neaton, J. B., & Bertozzi, C. R. (2008). Synthesis, Characterization, and Theory of [9]-, [12]-, and [18]Cycloparaphenylene: Carbon Nanohoop Structures. Journal of the American Chemical Society, 130(52), 17646-17647. doi:10.1021/ja807126uFort, E. H., Donovan, P. M., & Scott, L. T. (2009). Diels−Alder Reactivity of Polycyclic Aromatic Hydrocarbon Bay Regions: Implications for Metal-Free Growth of Single-Chirality Carbon Nanotubes. Journal of the American Chemical Society, 131(44), 16006-16007. doi:10.1021/ja907802gFort, E. H., & Scott, L. T. (2010). One-Step Conversion of Aromatic Hydrocarbon Bay Regions into Unsubstituted Benzene Rings: A Reagent for the Low-Temperature, Metal-Free Growth of Single-Chirality Carbon Nanotubes. Angewandte Chemie, 122(37), 6776-6778. doi:10.1002/ange.201002859Lu, D., Cui, S., & Du, P. (2017). Large π-Extension of Carbon Nanorings by Incorporating Hexa-peri-hexabenzocoronenes. Synlett, 28(14), 1671-1677. doi:10.1055/s-0036-1588830Niu, T., Wu, J., Ling, F., Jin, S., Lu, G., & Zhou, M. (2017). Halogen-Adatom Mediated Phase Transition of Two-Dimensional Molecular Self-Assembly on a Metal Surface. Langmuir, 34(1), 553-560. doi:10.1021/acs.langmuir.7b03796Lee, J. W., Samal, S., Selvapalam, N., Kim, H.-J., & Kim, K. (2003). Cucurbituril Homologues and Derivatives:  New Opportunities in Supramolecular Chemistry. Accounts of Chemical Research, 36(8), 621-630. doi:10.1021/ar020254kNi, X.-L., Xiao, X., Cong, H., Zhu, Q.-J., Xue, S.-F., & Tao, Z. (2014). Self-Assemblies Based on the «Outer-Surface Interactions» of Cucurbit[n]urils: New Opportunities for Supramolecular Architectures and Materials. Accounts of Chemical Research, 47(4), 1386-1395. doi:10.1021/ar5000133Wang, P., Wu, Y., Zhao, Y., Yu, Y., Zhang, M., & Cao, L. (2017). Crystalline nanotubular framework constructed by cucurbit[8]uril for selective CO2 adsorption. Chemical Communications, 53(40), 5503-5506. doi:10.1039/c7cc02074kJames, S. L. (2003). Metal-organic frameworks. Chemical Society Reviews, 32(5), 276. doi:10.1039/b200393gH.-C. Zhou , J. R.Long and O. M.Yaghi , Introduction to metal–organic frameworks , ACS Publications , 2012Dhakshinamoorthy, A., Asiri, A. M., & Garcia, H. (2017). Metal Organic Frameworks as Versatile Hosts of Au Nanoparticles in Heterogeneous Catalysis. ACS Catalysis, 7(4), 2896-2919. doi:10.1021/acscatal.6b03386Dhakshinamoorthy, A., & Garcia, H. (2014). Cascade Reactions Catalyzed by Metal Organic Frameworks. ChemSusChem, 7(9), 2392-2410. doi:10.1002/cssc.201402148Dhakshinamoorthy, A., Asiri, A. M., & Garcia, H. (2014). Catalysis by metal–organic frameworks in water. Chem. Commun., 50(85), 12800-12814. doi:10.1039/c4cc04387aDhakshinamoorthy, A., Asiri, A. M., & Garcia, H. (2016). Metal-Organic Frameworks as Catalysts for Oxidation Reactions. Chemistry - A European Journal, 22(24), 8012-8024. doi:10.1002/chem.201505141Noh, T. H., & Jung, O.-S. (2016). Recent Advances in Various Metal–Organic Channels for Photochemistry beyond Confined Spaces. Accounts of Chemical Research, 49(9), 1835-1843. doi:10.1021/acs.accounts.6b00291Tabacchi, G. (2018). Supramolecular Organization in Confined Nanospaces. ChemPhysChem, 19(11), 1249-1297. doi:10.1002/cphc.201701090Haldar, R., Reddy, S. K., Suresh, V. M., Mohapatra, S., Balasubramanian, S., & Maji, T. K. (2014). Flexible and Rigid Amine-Functionalized Microporous Frameworks Based on Different Secondary Building Units: Supramolecular Isomerism, Selective CO2Capture, and Catalysis. Chemistry - A European Journal, 20(15), 4347-4356. doi:10.1002/chem.201303610Tan, L.-L., Song, N., Zhang, S. X.-A., Li, H., Wang, B., & Yang, Y.-W. (2016). Ca2+, pH and thermo triple-responsive mechanized Zr-based MOFs for on-command drug release in bone diseases. Journal of Materials Chemistry B, 4(1), 135-140. doi:10.1039/c5tb01789kRimoldi, M., Howarth, A. J., DeStefano, M. R., Lin, L., Goswami, S., Li, P., … Farha, O. K. (2016). Catalytic Zirconium/Hafnium-Based Metal–Organic Frameworks. ACS Catalysis, 7(2), 997-1014. doi:10.1021/acscatal.6b02923Winter, A., Hager, M. D., Newkome, G. R., & Schubert, U. S. (2011). The Marriage of Terpyridines and Inorganic Nanoparticles: Synthetic Aspects, Characterization Techniques, and Potential Applications. Advanced Materials, 23(48), 5728-5748. doi:10.1002/adma.201103612Ding, X., Gao, Y., Ye, L., Zhang, L., & Sun, L. (2015). Assembling Supramolecular Dye-Sensitized Photoelectrochemical Cells for Water Splitting. ChemSusChem, 8(23), 3992-3995. doi:10.1002/cssc.201500313Tajima, T., Sakata, W., Wada, T., Tsutsui, A., Nishimoto, S., Miyake, M., & Takaguchi, Y. (2011). Photosensitized Hydrogen Evolution from Water Using a Single-Walled Carbon Nanotube/Fullerodendron/SiO2 Coaxial Nanohybrid. Advanced Materials, 23(48), 5750-5754. doi:10.1002/adma.201103472Ueda, Y., Takeda, H., Yui, T., Koike, K., Goto, Y., Inagaki, S., & Ishitani, O. (2014). A Visible-Light Harvesting System for CO2Reduction Using a RuII-ReIPhotocatalyst Adsorbed in Mesoporous Organosilica. ChemSusChem, 8(3), 439-442. doi:10.1002/cssc.201403194Yokoyama, T., Yokoyama, S., Kamikado, T., Okuno, Y., & Mashiko, S. (2001). Selective assembly on a surface of supramolecular aggregates with controlled size and shape. Nature, 413(6856), 619-621. doi:10.1038/35098059Barth, J. V., Costantini, G., & Kern, K. (2005). Engineering atomic and molecular nanostructures at surfaces. Nature, 437(7059), 671-679. doi:10.1038/nature04166Klasovsky, F., Hohmeyer, J., Brückner, A., Bonifer, M., Arras, J., Steffan, M., … Claus, P. (2008). Catalytic and Mechanistic Investigation of Polyaniline Supported PtO2 Nanoparticles: A Combined in situ/operando EPR, DRIFTS, and EXAFS Study. The Journal of Physical Chemistry C, 112(49), 19555-19559. doi:10.1021/jp805970eNishiyama, F., Yokoyama, T., Kamikado, T., Yokoyama, S., Mashiko, S., Sakaguchi, K., & Kikuchi, K. (2007). Interstitial Accommodation of C60 in a Surface-Supported Supramolecular Network. Advanced Materials, 19(1), 117-120. doi:10.1002/adma.200601364Shalom, M., Inal, S., Fettkenhauer, C., Neher, D., & Antonietti, M. (2013). Improving Carbon Nitride Photocatalysis by Supramolecular Preorganization of Monomers. Journal of the American Chemical Society, 135(19), 7118-7121. doi:10.1021/ja402521sSun, J., Xu, J., Grafmueller, A., Huang, X., Liedel, C., Algara-Siller, G., … Shalom, M. (2017). Self-assembled carbon nitride for photocatalytic hydrogen evolution and degradation of p-nitrophenol. Applied Catalysis B: Environmental, 205, 1-10. doi:10.1016/j.apcatb.2016.12.030Ishida, Y., Chabanne, L., Antonietti, M., & Shalom, M. (2014). Morphology Control and Photocatalysis Enhancement by the One-Pot Synthesis of Carbon Nitride from Preorganized Hydrogen-Bonded Supramolecular Precursors. Langmuir, 30(2), 447-451. doi:10.1021/la404101hZhang, J., Hao, J., Wei, Y., Xiao, F., Yin, P., & Wang, L. (2010). Nanoscale Chiral Rod-like Molecular Triads Assembled from Achiral Polyoxometalates. Journal of the American Chemical Society, 132(1), 14-15. doi:10.1021/ja907535gZheng, Y., Zhou, H., Liu, D., Floudas, G., Wagner, M., Koynov, K., … Ikeda, T. (2013). Supramolecular Thiophene Nanosheets. Angewandte Chemie, 125(18), 4945-4948. doi:10.1002/ange.201210090Lee, E., Kim, J.-K., & Lee, M. (2009). Reversible Scrolling of Two-Dimensional Sheets from the Self-Assembly of Laterally Grafted Amphiphilic Rods. Angewandte Chemie International Edition, 48(20), 3657-3660. doi:10.1002/anie.200900079Kambe, T., Sakamoto, R., Hoshiko, K., Takada, K., Miyachi, M., Ryu, J.-H., … Nishihara, H. (2013). π-Conjugated Nickel Bis(dithiolene) Complex Nanosheet. Journal of the American Chemical Society, 135(7), 2462-2465. doi:10.1021/ja312380bDong, R., Pfeffermann, M., Liang, H., Zheng, Z., Zhu, X., Zhang, J., & Feng, X. (2015). Large-Area, Free-Standing, Two-Dimensional Supramolecular Polymer Single-Layer Sheets for Highly Efficient Electro

    Seizing the window of opportunity to mitigate the impact of climate change on the health of Chinese residents

    Get PDF
    The health threats posed by climate change in China are increasing rapidly. Each province faces different health risks. Without a timely and adequate response, climate change will impact lives and livelihoods at an accelerated rate and even prevent the achievement of the Healthy and Beautiful China initiatives. The 2021 China Report of the Lancet Countdown on Health and Climate Change is the first annual update of China’s Report of the Lancet Countdown. It comprehensively assesses the impact of climate change on the health of Chinese households and the measures China has taken. Invited by the Lancet committee, Tsinghua University led the writing of the report and cooperated with 25 relevant institutions in and outside of China. The report includes 25 indicators within five major areas (climate change impacts, exposures, and vulnerability; adaptation, planning, and resilience for health; mitigation actions and health co-benefits; economics and finance; and public and political engagement) and a policy brief. This 2021 China policy brief contains the most urgent and relevant indicators focusing on provincial data: The increasing health risks of climate change in China; mixed progress in responding to climate change. In 2020, the heatwave exposures per person in China increased by 4.51 d compared with the 1986–2005 average, resulting in an estimated 92% increase in heatwave-related deaths. The resulting economic cost of the estimated 14500 heatwave-related deaths in 2020 is US$176 million. Increased temperatures also caused a potential 31.5 billion h in lost work time in 2020, which is equivalent to 1.3% of the work hours of the total national workforce, with resulting economic losses estimated at 1.4% of China’s annual gross domestic product. For adaptation efforts, there has been steady progress in local adaptation planning and assessment in 2020, urban green space growth in 2020, and health emergency management in 2019. 12 of 30 provinces reported that they have completed, or were developing, provincial health adaptation plans. Urban green space, which is an important heat adaptation measure, has increased in 18 of 31 provinces in the past decade, and the capacity of China’s health emergency management increased in almost all provinces from 2018 to 2019. As a result of China’s persistent efforts to clean its energy structure and control air pollution, the premature deaths due to exposure to ambient particulate matter of 2.5 μm or less (PM2.5) and the resulting costs continue to decline. However, 98% of China’s cities still have annual average PM2.5 concentrations that are more than the WHO guideline standard of 10 μg/m3. It provides policymakers and the public with up-to-date information on China’s response to climate change and improvements in health outcomes and makes the following policy recommendations. (1) Promote systematic thinking in the related departments and strengthen multi-departmental cooperation. Sectors related to climate and development in China should incorporate health perspectives into their policymaking and actions, demonstrating WHO’s and President Xi Jinping’s so-called health-in-all-policies principle. (2) Include clear goals and timelines for climate-related health impact assessments and health adaptation plans at both the national and the regional levels in the National Climate Change Adaptation Strategy for 2035. (3) Strengthen China’s climate mitigation actions and ensure that health is included in China’s pathway to carbon neutrality. By promoting investments in zero-carbon technologies and reducing fossil fuel subsidies, the current rebounding trend in carbon emissions will be reversed and lead to a healthy, low-carbon future. (4) Increase awareness of the linkages between climate change and health at all levels. Health professionals, the academic community, and traditional and new media should raise the awareness of the public and policymakers on the important linkages between climate change and health.</p
    corecore