5,397 research outputs found

    Maurer-Cartan moduli and models for function spaces

    Full text link
    We set up a formalism of Maurer-Cartan moduli sets for L-infinity algebras and associated twistings based on the closed model category structure on formal differential graded algebras (a.k.a. differential graded coalgebras). Among other things this formalism allows us to give a compact and manifestly homotopy invariant treatment of Chevalley-Eilenberg and Harrison cohomology. We apply the developed technology to construct rational homotopy models for function spaces.Comment: 22 pages. This version, which will appear in Advances in Mathematics, contains various technical corrections and updated bibliograph

    Angular distribution of photoluminescence as a probe of Bose Condensation of trapped excitons

    Full text link
    Recent experiments on two-dimensional exciton systems have shown the excitons collect in shallow in-plane traps. We find that Bose condensation in a trap results in a dramatic change of the exciton photoluminescence (PL) angular distribution. The long-range coherence of the condensed state gives rise to a sharply focussed peak of radiation in the direction normal to the plane. By comparing the PL profile with and without Bose Condensation we provide a simple diagnostic for the existence of a Bose condensate. The PL peak has strong temperature dependence due to the thermal order parameter phase fluctuations across the system. The angular PL distribution can also be used for imaging vortices in the trapped condensate. Vortex phase spatial variation leads to destructive interference of PL radiation in certain directions, creating nodes in the PL distribution that imprint the vortex configuration.Comment: 4 pages, 3 figure

    Codeword stabilized quantum codes: algorithm and structure

    Full text link
    The codeword stabilized ("CWS") quantum codes formalism presents a unifying approach to both additive and nonadditive quantum error-correcting codes (arXiv:0708.1021). This formalism reduces the problem of constructing such quantum codes to finding a binary classical code correcting an error pattern induced by a graph state. Finding such a classical code can be very difficult. Here, we consider an algorithm which maps the search for CWS codes to a problem of identifying maximum cliques in a graph. While solving this problem is in general very hard, we prove three structure theorems which reduce the search space, specifying certain admissible and optimal ((n,K,d)) additive codes. In particular, we find there does not exist any ((7,3,3)) CWS code though the linear programming bound does not rule it out. The complexity of the CWS search algorithm is compared with the contrasting method introduced by Aggarwal and Calderbank (arXiv:cs/0610159).Comment: 11 pages, 1 figur

    Ring-Like Solitons in Plasmonic Fiber Waveguide Composed of Metal-Dielectric Multilayers

    Full text link
    We design a plasmonic fiber waveguide (PFW) composed of coaxial cylindrical metal-dielectric multilayers in nanoscale, and constitute the corresponding dynamical equations describing the modes of propagation in the PFW with the Kerr nonlinearity in the dielectric layers. The physics is connected to the discrete matrix nonlinear Schr\"{o}dinger equations, from which the highly confined ring-like solitons in scale of subwavelength are found both for the visible light and the near-infrared light in the self-defocusing condition. Moreover, the confinement could be further improved when increasing the intensity of the input light due to the cylindrical symmetry of the PFW, which means both the width and the radius of the ring are reduced.Comment: 4 figures, submitte

    Statistical Properties of Strings

    Get PDF
    We investigate numerically the configurational statistics of strings. The algorithm models an ensemble of global U(1)U(1) cosmic strings, or equivalently vortices in superfluid 4^4He. We use a new method which avoids the specification of boundary conditions on the lattice. We therefore do not have the artificial distinction between short and long string loops or a `second phase' in the string network statistics associated with strings winding around a toroidal lattice. Our lattice is also tetrahedral, which avoids ambiguities associated with the cubic lattices of previous work. We find that the percentage of infinite string is somewhat lower than on cubic lattices, 63\% instead of 80\%. We also investigate the Hagedorn transition, at which infinite strings percolate, controlling the string density by rendering one of the equilibrium states more probable. We measure the percolation threshold, the critical exponent associated with the divergence of a suitably defined susceptibility of the string loops, and that associated with the divergence of the correlation length.Comment: 20 pages, 8 figures (uuencoded) appended, DAMTP-94-56, SUSX-TP-94-7

    MOCVD of hard metallurgical coatings: Examples in the Cr–C–N system

    Get PDF
    All individual phases of the ternary Cr–C–N system including stable and metastable ones can be deposited at low temperature by metalorganic chemical vapor deposition (MOCVD). These growth processes are mainly based on the use of bis(benzene)chromium as chromium source and various co-reactives. Then, from a good control of the reactive gas phase, it is possible to combine these MOCVD processes to grow in the same reactor protective coatings designed with a complex architecture based on polyphased, nanostructured or multilayer structure which exhibit enhanced properties. These deposition processes are described and the main features of the coatings are discussed

    Dosimetric validation of a magnetic resonance image gated radiotherapy system using a motion phantom and radiochromic film.

    Get PDF
    PurposeMagnetic resonance image (MRI) guided radiotherapy enables gating directly on the target position. We present an evaluation of an MRI-guided radiotherapy system's gating performance using an MRI-compatible respiratory motion phantom and radiochromic film. Our evaluation is geared toward validation of our institution's clinical gating protocol which involves planning to a target volume formed by expanding 5 mm about the gross tumor volume (GTV) and gating based on a 3 mm window about the GTV.MethodsThe motion phantom consisted of a target rod containing high-contrast target inserts which moved in the superior-inferior direction inside a body structure containing background contrast material. The target rod was equipped with a radiochromic film insert. Treatment plans were generated for a 3 cm diameter spherical planning target volume, and delivered to the phantom at rest and in motion with and without gating. Both sinusoidal trajectories and tumor trajectories measured during MRI-guided treatments were used. Similarity of the gated dose distribution to the planned, motion-frozen, distribution was quantified using the gamma technique.ResultsWithout gating, gamma pass rates using 4%/3 mm criteria were 22-59% depending on motion trajectory. Using our clinical standard of repeated breath holds and a gating window of 3 mm with 10% target allowed outside the gating boundary, the gamma pass rate was 97.8% with 3%/3 mm gamma criteria. Using a 3 mm window and 10% allowed excursion, all of the patient tumor motion trajectories at actual speed resulting in at least 95% gamma pass rate at 4%/3 mm.ConclusionsOur results suggest that the device can be used to compensate respiratory motion using a 3 mm gating margin and 10% allowed excursion results in conjunction with repeated breath holds. Full clinical validation requires a comprehensive evaluation of tracking performance in actual patient images, outside the scope of this study

    Theory of coherent acoustic phonons in InGaN/GaN multi-quantum wells

    Full text link
    A microscopic theory for the generation and propagation of coherent LA phonons in pseudomorphically strained wurzite (0001) InGaN/GaN multi-quantum well (MQW) p-i-n diodes is presented. The generation of coherent LA phonons is driven by photoexcitation of electron-hole pairs by an ultrafast Gaussian pump laser and is treated theoretically using the density matrix formalism. We use realistic wurzite bandstructures taking valence-band mixing and strain-induced piezo- electric fields into account. In addition, the many-body Coulomb ineraction is treated in the screened time-dependent Hartree-Fock approximation. We find that under typical experimental conditions, our microscopic theory can be simplified and mapped onto a loaded string problem which can be easily solved.Comment: 20 pages, 17 figure

    Acceleration of Enterococcus faecalis Biofilm Formation by Aggregation Substance Expression in an Ex Vivo Model of Cardiac Valve Colonization

    Get PDF
    Infectious endocarditis involves formation of a microbial biofilm in vivo. Enterococcus faecalis Aggregation Substance (Asc10) protein enhances the severity of experimental endocarditis, where it has been implicated in formation of large vegetations and in microbial persistence during infection. In the current study, we developed an ex vivo porcine heart valve adherence model to study the initial interactions between Asc10+ and Asc10− E. faecalis and valve tissue, and to examine formation of E. faecalis biofilms on a relevant tissue surface. Scanning electron microscopy of the infected valve tissue provided evidence for biofilm formation, including growing masses of bacterial cells and the increasing presence of exopolymeric matrix over time; accumulation of adherent biofilm populations on the cardiac valve surfaces during the first 2–4 h of incubation was over 10-fold higher than was observed on abiotic membranes incubated in the same culture medium. Asc10 expression accelerated biofilm formation via aggregation between E. faecalis cells; the results also suggested that in vivo adherence to host tissue and biofilm development by E. faecalis can proceed by Asc10-dependent or Asc10-independent pathways. Mutations in either of two Asc10 subdomains previously implicated in endocarditis virulence reduced levels of adherent bacterial populations in the ex vivo system. Interference with the molecular interactions involved in adherence and initiation of biofilm development in vivo with specific inhibitory compounds could lead to more effective treatment of infectious endocarditis
    • …
    corecore