359 research outputs found

    Mutagenesis of the fusion peptide-like domain of hepatitis C virus E1 glycoprotein: involvement in cell fusion and virus entry

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Envelope (E) glycoprotein E2 of the hepatitis C virus (HCV) mediates binding of the virus to target cell receptors. Nevertheless, the precise role of E1 in viral entry remains elusive.</p> <p>Methods</p> <p>To understand the involvement of the fusion peptide-like domain positioned at residues 264 to 290 within envelope glycoprotein E1 in HCV infection, mutants with Ala and Asn substitutions for residues conserved between HCV and E proteins of flaviviruses or the fusion proteins of paramyxoviruses were constructed by site-directed mutagenesis and their effects on membrane fusion and viral infectivity were examined.</p> <p>Results</p> <p>None of these mutations affected the synthesis or cell surface expression of envelope proteins, nor did they alter the formation of a non-covalent E1-E2 heterodimer or E2 binding to the large extracellular loop of CD81. The Cys residues located at positions 272 and 281 were unlikely involved in intra- or intermolecular disulfide bond formation. With the exception of the G267A mutant, which showed increased cell fusion, other mutants displayed reduced or marginally inhibited cell fusion capacities compared to the wild-type (WT) E1E2. The G267A mutant was also an exception in human immunodeficiency virus type 1 (HIV-1)/HCV E1E2 pseudotyping analyses, in that it showed higher one-cycle infectivity; all other mutants exhibited greatly or partially reduced viral entry versus the WT pseudotype. All but the G278A and D279N mutants showed a WT-like profile of E1E2 incorporation into HIV-1 particles. Since C272A, C281A, G282A, and G288A pseudotypes bound to Huh7 cells as effectively as did the WT pseudotype, the reduced infectivity of these pseudotypes was due to their ability to inhibit cell fusion.</p> <p>Conclusion</p> <p>Our results indicate that specific residues, but not the structure, of this fusion peptide-like domain are required for mediating cell fusion and viral entry.</p

    Whole-body vibration training effect on physical performance and obesity in mice

    Get PDF
    The purpose of this study was to verify the beneficial effects of whole-body vibration (WBV) training on exercise performance, physical fatigue and obesity in mice with obesity induced by a high-fat diet (HFD). Male C57BL/6 mice were randomly divided into two groups: normal group (n=6), fed standard diet (control), and experimental group (n=18), fed a HFD. After 4-week induction, followed by 6-week WBV of 5 days per week, the 18 obese mice were divided into 3 groups (n=6 per group): HFD with sedentary control (HFD), HFD with WBV at relatively low-intensity (5.6 Hz, 0.13 g) (HFD+VL) or high-intensity (13 Hz, 0.68 g) (HFD+VH). A trend analysis revealed that WBV increased the grip strength in mice. WBV also dose-dependently decreased serum lactate, ammonia and CK levels and increased glucose level after the swimming test. WBV slightly decreased final body weight and dose-dependently decreased weights of epididymal, retroperitoneal and perirenal fat pads and fasting serum levels of alanine aminotransferase, CK, glucose, total cholesterol and triacylglycerol. Therefore, WBV could improve exercise performance and fatigue and prevent fat accumulation and obesity-associated biochemical alterations in obese mice. It may be an effective intervention for health promotion and prevention of HFD-induced obesity

    Production of Active Nonglycosylated Recombinant B-Chain of Type-2 Ribosome-Inactivating Protein from Viscum articulatum and Its Biological Effects on Peripheral Blood Mononuclear Cells

    Get PDF
    Type-2 ribosome-inactivating proteins, composed of a toxic A-chain and lectin-like B-chain, display various biological functions, including cytotoxicity and immunomodulation. We here cloned the lectin-like B-chain encoding fragment of a newly identified type-2 RIP gene, articulatin gene, from Viscum articulatum, into a bacterial expression vector to obtain nonglycosylated recombinant protein expressed in inclusion bodies. After purification and protein refolding, soluble refolded recombinant articulatin B-chain (rATB) showed lectin activity specific toward galactoside moiety and was stably maintained while stored in low ionic strength solution. Despite lacking glycosylation, rATB actively bound leukocytes with preferential binding to monocytes and in vitro stimulated PBMCs to release cytokines without obvious cytotoxicity. These results implicated such a B-chain fragment as a potential immunomodulator

    Pembuatan Niosom Berbasis Maltodekstrin De 5-10 Dari Pati Singkong (Manihot Utilissima)

    Get PDF
    Niosomes are non ionic surfactant vesicles that have potential application in the delivery of hydrophobic or amphilic drugs. We developed proniosomes, a dry formulation using a maltodextrin as a carrier coated with non ionic surfactant, which can be used to produce niosomes within a minutes by addition of hot water followed by agitation. A novel method is reported here for rapid preparation of proniosomes with wide range of surfactant loading. Maltodextrin DE 5-10 was hidrolyzed from tapioca starch using Thermamyl L 120 da Novo at 85o C. The result from SEM analyses shown that proniosomes appear very similar to the maltodextrin, but the surface was more smooth. Niosome suspensions which was observed under the optical microscopy and particle size analyzer were evaluated as drug carrier using ibuprofen as a model. The result provide an indication of maltodextrin DE 5-10 from tapioca starch are potentialy carrier in the proniosome preparation which can be used for producing niosomes

    Extremely High Methane Concentration in Bottom Water and Cored Sediments from Offshore Southwestern Taiwan

    Full text link
    It has been found that Bottom Simulating Reflections (BSRs), which infer the existence of potential gas hydrates underneath seafloor sediments, are widely distributed in offshore southwestern Taiwan. Fluids and gases derived from dissociation of gas hydrates, which are typically methane enriched, affect the composition of seawater and sediments near venting areas. Hence, methane concentration of seawater and sediments become useful proxies for exploration of potential gas hydrates in a given area. We systematically collected bottom waters and sedimentary core samples for dissolved and pore-space gas analyses through five cruises: ORI-697, ORI-718, ORII-1207, ORII-1230, and ORI-732 from 2003 to 2005 in this study. Some sites with extremely high methane concentrations have been found in offshore southwestern Taiwan, e.g., sites G23 of ORI-697, N8 of ORI-718, and G96 of ORI-732. The methane concentrations of cored sediments display an increasing trend with depth. Furthermore, the down-core profiles of methane and sulfate reveal very shallow depths of sulfate methane interface (SMI) at some sites in this study. It implies sulfate reduction being mainly driven by the process of anaerobic methane oxidation (AMO) in sediments; thus indicating that there is a methane-enriched venting source, which may be the product of dissociation of gas hydrates in this area

    The genome sequence of the orchid Phalaenopsis equestris

    Get PDF
    Orchidaceae, renowned for its spectacular flowers and other reproductive and ecological adaptations, is one of the most diverse plant families. Here we present the genome sequence of the tropical epiphytic orchid Phalaenopsis equestris, a frequently used parent species for orchid breeding. P. equestris is the first plant with crassulacean acid metabolism (CAM) for which the genome has been sequenced. Our assembled genome contains 29,431 predicted protein-coding genes. We find that contigs likely to be underassembled, owing to heterozygosity, are enriched for genes that might be involved in self-incompatibility pathways. We find evidence for an orchid-specific paleopolyploidy event that preceded the radiation of most orchid clades, and our results suggest that gene duplication might have contributed to the evolution of CAM photosynthesis in P. equestris. Finally, we find expanded and diversified families of MADS-box C/D-class, B-class AP3 and AGL6-class genes, which might contribute to the highly specialized morphology of orchid flowers. (Résumé d'auteur
    corecore