223 research outputs found

    Rare Decays of \Lambda_b->\Lambda + \gamma and \Lambda_b ->\Lambda + l^{+} l^{-} in the Light-cone Sum Rules

    Full text link
    Within the Standard Model, we investigate the weak decays of ΛbΛ+γ\Lambda_b \to \Lambda + \gamma and ΛbΛ+l+l\Lambda_b \to \Lambda + l^{+} l^{-} with the light-cone sum rules approach. The higher twist distribution amplitudes of Λ\Lambda baryon to the leading conformal spin are included in the sum rules for transition form factors. Our results indicate that the higher twist distribution amplitudes almost have no influences on the transition form factors retaining the heavy quark spin symmetry, while such corrections can result in significant impacts on the form factors breaking the heavy quark spin symmetry. Two phenomenological models (COZ and FZOZ) for the wave function of Λ\Lambda baryon are also employed in the sum rules for a comparison, which can give rise to the form factors approximately 5 times larger than that in terms of conformal expansion. Utilizing the form factors calculated in LCSR, we then perform a careful study on the decay rate, polarization asymmetry and forward-backward asymmetry, with respect to the decays of ΛbΛγ\Lambda_b \to \Lambda \gamma, Λl+l\Lambda l^{+}l^{-}.Comment: 38 pages, 15 figures, some typos are corrected and more references are adde

    Observation of the Decays B0->K+pi-pi0 and B0->rho-K+

    Get PDF
    We report the observation of B^0 decays to the K^+pi^-pi^0 final state using a data sample of 78 fb^-1 collected by the Belle detector at the KEKB e^+e^- collider. With no assumptions about intermediate states in the decay, the branching fraction is measured to be (36.6^{+4.2}_{-4.3}+- 3.0)*10^-6.We also search for B decays to intermediate two-body states with the same K^+pi^-pi^0 final state. Significant B signals are observed in the rho(770)^- K^+ and K^*(892)^+pi^- channels, with branching fractions of (15.1^{+3.4+1.4+2.0}_{-3.3-1.5-2.1})* 10^-6 and (14.8^{+4.6+1.5+2.4}_{-4.4-1.0-0.9})* 10^-6, respectively. The first error is statistical, the second is systematic and the third is due to the largest possible interference. Contributions from other possible two-body states will be discussed. No CP asymmetry is found in the inclusive K^+pi^-pi^0 or rho^-K^+ modes, and we set 90% confidence level bounds on the asymmetry of -0.12<A_{CP}<0.26 and -0.18<A_{CP}<0.64, respectively.Comment: 18 pages, 7 figure

    Study of the decay mechanism for B+ to p pbar K+ and B+ to p pbar pi+

    Full text link
    We study the characteristics of the low mass ppbar enhancements near threshold in the three-body decays B+ to p pbar K+ and B+ to p pbar pi+. We observe that the proton polar angle distributions in the ppbar helicity frame in the two decays have the opposite polarity, and measure the forward-backward asymmetries as a function of the ppbar mass for the p pbar K+ mode. We also search for the intermediate two-body decays, B+ to pbar Delta++ and B+ to p Delta0bar, and set upper limits on their branching fractions. These results are obtained from a 414 fb^{-1} data sample that contains 449 times 10^6 BBbar events collected near the Upsilon(4S) resonance with the Belle detector at the KEKB asymmetric-energy e+ e- collider.Comment: 15 pages, 5 figures (14 figure files), revisions to Phys. Lett.

    Fine-Scale Mapping of the 4q24 Locus Identifies Two Independent Loci Associated with Breast Cancer Risk

    Get PDF
    Background: A recent association study identified a common variant (rs9790517) at 4q24 to be associated with breast cancer risk. Independent association signals and potential functional variants in this locus have not been explored. Methods: We conducted a fine-mapping analysis in 55,540 breast cancer cases and 51,168 controls from the Breast Cancer Association Consortium. Results: Conditional analyses identified two independent association signals among women of European ancestry, represented by rs9790517 [conditional P = 2.51 × 10−4; OR, 1.04; 95% confidence interval (CI), 1.02–1.07] and rs77928427 (P = 1.86 × 10−4; OR, 1.04; 95% CI, 1.02–1.07). Functional annotation using data from the Encyclopedia of DNA Elements (ENCODE) project revealed two putative functional variants, rs62331150 and rs73838678 in linkage disequilibrium (LD) with rs9790517 (r2 ≥ 0.90) residing in the active promoter or enhancer, respectively, of the nearest gene, TET2. Both variants are located in DNase I hypersensitivity and transcription factor–binding sites. Using data from both The Cancer Genome Atlas (TCGA) and Molecular Taxonomy of Breast Cancer International Consortium (METABRIC), we showed that rs62331150 was associated with level of expression of TET2 in breast normal and tumor tissue. Conclusion: Our study identified two independent association signals at 4q24 in relation to breast cancer risk and suggested that observed association in this locus may be mediated through the regulation of TET2. Impact: Fine-mapping study with large sample size warranted for identification of independent loci for breast cancer risk

    Search for Tensor, Vector, and Scalar Polarizations in the Stochastic Gravitational-Wave Background

    Get PDF
    The detection of gravitational waves with Advanced LIGO and Advanced Virgo has enabled novel tests of general relativity, including direct study of the polarization of gravitational waves. While general relativity allows for only two tensor gravitational-wave polarizations, general metric theories can additionally predict two vector and two scalar polarizations. The polarization of gravitational waves is encoded in the spectral shape of the stochastic gravitational-wave background, formed by the superposition of cosmological and individually unresolved astrophysical sources. Using data recorded by Advanced LIGO during its first observing run, we search for a stochastic background of generically polarized gravitational waves. We find no evidence for a background of any polarization, and place the first direct bounds on the contributions of vector and scalar polarizations to the stochastic background. Under log-uniform priors for the energy in each polarization, we limit the energy densities of tensor, vector, and scalar modes at 95% credibility to Ω0T<5.58×10-8, Ω0V<6.35×10-8, and Ω0S<1.08×10-7 at a reference frequency f0=25 Hz. © 2018 American Physical Society

    All-sky search for long-duration gravitational wave transients with initial LIGO

    Get PDF
    We present the results of a search for long-duration gravitational wave transients in two sets of data collected by the LIGO Hanford and LIGO Livingston detectors between November 5, 2005 and September 30, 2007, and July 7, 2009 and October 20, 2010, with a total observational time of 283.0 days and 132.9 days, respectively. The search targets gravitational wave transients of duration 10-500 s in a frequency band of 40-1000 Hz, with minimal assumptions about the signal waveform, polarization, source direction, or time of occurrence. All candidate triggers were consistent with the expected background; as a result we set 90% confidence upper limits on the rate of long-duration gravitational wave transients for different types of gravitational wave signals. For signals from black hole accretion disk instabilities, we set upper limits on the source rate density between 3.4×10-5 and 9.4×10-4 Mpc-3 yr-1 at 90% confidence. These are the first results from an all-sky search for unmodeled long-duration transient gravitational waves. © 2016 American Physical Society

    All-sky search for long-duration gravitational wave transients with initial LIGO

    Get PDF
    We present the results of a search for long-duration gravitational wave transients in two sets of data collected by the LIGO Hanford and LIGO Livingston detectors between November 5, 2005 and September 30, 2007, and July 7, 2009 and October 20, 2010, with a total observational time of 283.0 days and 132.9 days, respectively. The search targets gravitational wave transients of duration 10-500 s in a frequency band of 40-1000 Hz, with minimal assumptions about the signal waveform, polarization, source direction, or time of occurrence. All candidate triggers were consistent with the expected background; as a result we set 90% confidence upper limits on the rate of long-duration gravitational wave transients for different types of gravitational wave signals. For signals from black hole accretion disk instabilities, we set upper limits on the source rate density between 3.4×10-5 and 9.4×10-4 Mpc-3 yr-1 at 90% confidence. These are the first results from an all-sky search for unmodeled long-duration transient gravitational waves. © 2016 American Physical Society

    Search for gravitational waves from Scorpius X-1 in the second Advanced LIGO observing run with an improved hidden Markov model

    Get PDF
    We present results from a semicoherent search for continuous gravitational waves from the low-mass x-ray binary Scorpius X-1, using a hidden Markov model (HMM) to track spin wandering. This search improves on previous HMM-based searches of LIGO data by using an improved frequency domain matched filter, the J-statistic, and by analyzing data from Advanced LIGO's second observing run. In the frequency range searched, from 60 to 650 Hz, we find no evidence of gravitational radiation. At 194.6 Hz, the most sensitive search frequency, we report an upper limit on gravitational wave strain (at 95% confidence) of h095%=3.47×10-25 when marginalizing over source inclination angle. This is the most sensitive search for Scorpius X-1, to date, that is specifically designed to be robust in the presence of spin wandering. © 2019 American Physical Society

    Erratum: "A Gravitational-wave Measurement of the Hubble Constant Following the Second Observing Run of Advanced LIGO and Virgo" (2021, ApJ, 909, 218)

    Get PDF
    [no abstract available

    Search for Gravitational Waves Associated with Gamma-Ray Bursts Detected by Fermi and Swift during the LIGO-Virgo Run O3b

    Get PDF
    We search for gravitational-wave signals associated with gamma-ray bursts (GRBs) detected by the Fermi and Swift satellites during the second half of the third observing run of Advanced LIGO and Advanced Virgo (2019 November 1 15:00 UTC-2020 March 27 17:00 UTC). We conduct two independent searches: A generic gravitational-wave transients search to analyze 86 GRBs and an analysis to target binary mergers with at least one neutron star as short GRB progenitors for 17 events. We find no significant evidence for gravitational-wave signals associated with any of these GRBs. A weighted binomial test of the combined results finds no evidence for subthreshold gravitational-wave signals associated with this GRB ensemble either. We use several source types and signal morphologies during the searches, resulting in lower bounds on the estimated distance to each GRB. Finally, we constrain the population of low-luminosity short GRBs using results from the first to the third observing runs of Advanced LIGO and Advanced Virgo. The resulting population is in accordance with the local binary neutron star merger rate. © 2022. The Author(s). Published by the American Astronomical Society
    corecore