657 research outputs found

    Assessing the Effects of Chemical Mixtures using a Bayesian Network-Relative Risk Model (BN- RRM) Integrating Adverse Outcome Pathways (AOPs) in Four Watersheds

    Get PDF
    Chemical mixtures are difficult to assess at the individual scale and are more challenging at the population scale. I have conducted a regional-scale ecological risk assessment by evaluating the effects of chemical mixtures on populations with a Bayesian Network- Relative Risk Model (BN-RRM) in four Washington state watersheds (Skagit, Nooksack, Cedar and Yakima). Organophosphate pesticides (diazinon, malathion and chlorpyrifos) were chosen as the chemical stressors and the Puget Sound Chinook salmon (Oncorhynchus tshawytscha) Evolutionary Significant Unit (ESU) were chosen as the population endpoint. Laboratory tests found that organophosphate pesticide mixtures act synergistically and impair acetylcholinesterase activity. Exposure-response equations for binary mixtures of organophosphates were incorporated into the BN-RRM framework to predict risk to a population. Dissolved oxygen and water temperature were chosen as ecological stressors. The Puget Sound Partnership’s management goal of Puget Sound Chinook is no net loss. A generic ocean-type Chinook salmon population model was used in this risk assessment. Each of the population model simulations started with 500,000 fish. Any number below 500,000 was defined as a net loss. Risk was defined the probability of not achieving the management goal. Calculations indicate synergism does not occur with measured concentrations. This is because malathion, the known synergist, was not found in concentrations that induced a synergistic response. However, at malathion concentrations of 3-15 µg/L, synergism with the other OPs is predicted to occur and does increase risk. My research demonstrates that mixture toxicity can be incorporated into a probabilistic model that estimates risk on populations

    Using metapopulation models to estimate the effects of pesticides and environmental stressors to Spring Chinook salmon in the Yakima River Basin, WA

    Get PDF
    Population-level endpoints provide ecological relevance to Ecological Risk Assessments (ERAs), because this is the level at which environmental management decisions are made. However, many population-level risk assessments do not reflect the spatial and temporal heterogeneity of the populations they represent, and thus preclude an understanding of how population dynamics and viability are affected by toxicants on a regional scale. We have developed a probabilistic ERA (specifically, a Bayesian Network-Relative Risk Model (BN-RRM)) that integrates an Adverse Outcome Pathway (AOP) framework, to quantify the sub-lethal and lethal effects of toxicants and environmental stressors on the metapopulation dynamics of salmonids. As a case study for developing this model, we have examined the impacts of organophosphate (OP) insecticides, water temperature, and dissolved oxygen on the Spring Chinook (Oncorhynchus tshawytscha) salmon metapopulation in the Yakima River Basin (YRB), Washington. A stochastic Matrix Metapopulation Model was developed using demographic data for three Spring Chinook salmon populations and one supplemental hatchery population in the YRB. Site specific data on OP contaminated habitats utilized by various salmonid life stages were incorporated into the metapopulation model by incrementally reducing survival parameters based on levels of exposure. Exposure scenarios were simulated for 200 replications of 50-year population projections using RAMAS Metapop©, and the results were incorporated into the BN-RRM. The results of this modeling effort indicated that small, wild Spring Chinook populations in the YRB have a greater probability of altered population dynamics when exposed to stressors than larger, supplemented populations. Additionally, the results indicated a seasonal effect of the stressors, with summer conditions posing a greater risk to salmon populations than winter conditions. This probabilistic ERA framework shows promise for estimating the spatiotemporal impacts of stressors on ESA-listed species (i.e., Pacific salmon) at the metapopulation level, where population dynamics and spatial structure create complex risk dynamics

    Dataset for the Environmental Risk Assessment of Chlorpyrifos to Chinook Salmon in four Rivers of Washington State, United States

    Get PDF
    Data files available below. This data set is in support of Landis et al (in press) The integration of chlorpyrifos acetylcholinesterase inhibition, water temperature and dissolved oxygen concentration into a regional scale multiple stressor risk assessment estimating risk to Chinook salmon in four rivers in Washington State, USA. DOI: 10.1002/ieam.4199. In this research We estimated the risk to populations of Chinook salmon (Oncorhynchus tshawytscha) due to chlorpyrifos (CH), water temperature (WT) and dissolved oxygen concentrations (DO) in four watersheds in Washington State, USA. The watersheds included the Nooksack and Skagit Rivers in the Northern Puget Sound, the Cedar River in the Seattle -Tacoma corridor, and the Yakima River, a tributary of the Columbia River. The Bayesian network relative risk model (BN-RRM) was used to conduct this ecological risk assessment and was modified to contain an AChE inhibition pathway parameterized using data from chlorpyrifos toxicity datasets. The completed BN-RRM estimated risk at a population scale to Chinook salmon employing classical matrix modeling run up to 50 year timeframes. There were 4 primary conclusions drawn from the model building process and the risk calculations. First, the incorporation of an AChE inhibition pathway and the output from a population model can be combined with environmental factors in a quantitative fashion. Second, the probability of not meeting the management goal of no loss to the population ranges from 65 to 85 percent. Environmental conditions contributed to a larger proportion of the risk compared to chlorpyrifos. Third, the sensitivity analysis describing the influence of the variables on the predicted risk varied depending on seasonal conditions. In the summer, WT and DO were more influential that CH. In the winter, when the seasonal conditions are more benign, CH was the driver. Fourth, in order to reach the management-goal, we calculated the conditions that would increase in juvenile survival, adult survival, and a reduction in toxicological effects. The same process in this example should be applicable to the inclusion of multiple pesticides and to more descriptive population models such as those describing metapopulations. This research was supported by USEPA STAR Grant RD-83579501. Excel spreadsheet, model in Netica

    Integration of Chlorpyrifos Acetylcholinesterase Inhibition, Water Temperature, and Dissolved Oxygen Concentration into a Regional Scale Multiple Stressor Risk Assessment Estimating Risk to Chinook Salmon

    Get PDF
    We estimated the risk to populations of Chinook salmon (Oncorhynchus tshawytscha) due to chlorpyrifos (CH), water temperature (WT), and dissolved oxygen concentration (DO) in 4 watersheds in Washington State, USA. The watersheds included the Nooksack and Skagit Rivers in the Northern Puget Sound, the Cedar River in the Seattle–Tacoma corridor, and the Yakima River, a tributary of the Columbia River. The Bayesian network relative risk model (BN‐RRM) was used to conduct this ecological risk assessment and was modified to contain an acetylcholinesterase (AChE) inhibition pathway parameterized using data from CH toxicity data sets. The completed BN‐RRM estimated risk at a population scale to Chinook salmon employing classical matrix modeling runs up to 50‐y timeframes. There were 3 primary conclusions drawn from the model‐ building process and the risk calculations. First, the incorporation of an AChE inhibition pathway and the output from a population model can be combined with environmental factors in a quantitative fashion. Second, the probability of not meeting the management goal of no loss to the population ranges from 65% to 85%. Environmental conditions contributed to a larger proportion of the risk compared to CH. Third, the sensitivity analysis describing the influence of the variables on the predicted risk varied depending on seasonal conditions. In the summer, WT and DO were more influential than CH. In the winter, when the seasonal conditions are more benign, CH was the driver. Fourth, in order to reach the management goal, we calculated the conditions that would increase juvenile survival, adult survival, and a reduction in toxicological effects. The same process in this example should be applicable to the inclusion of multiple pesticides and to more descriptive population models such as those describing metapopulations. Integr Environ Assess Manag 2020;16:28–42. © 2019 SETA

    p38 MAPK Regulates Expression of Immune Response Genes and Contributes to Longevity in C. elegans

    Get PDF
    The PMK-1 p38 mitogen-activated protein kinase pathway and the DAF-2–DAF-16 insulin signaling pathway control Caenorhabditis elegans intestinal innate immunity. pmk-1 loss-of-function mutants have enhanced sensitivity to pathogens, while daf-2 loss-of-function mutants have enhanced resistance to pathogens that requires upregulation of the DAF-16 transcription factor. We used genetic analysis to show that the pathogen resistance of daf-2 mutants also requires PMK-1. However, genome-wide microarray analysis indicated that there was essentially no overlap between genes positively regulated by PMK-1 and DAF-16, suggesting that they form parallel pathways to promote immunity. We found that PMK-1 controls expression of candidate secreted antimicrobials, including C-type lectins, ShK toxins, and CUB-like genes. Microarray analysis demonstrated that 25% of PMK-1 positively regulated genes are induced by Pseudomonas aeruginosa infection. Using quantitative PCR, we showed that PMK-1 regulates both basal and infection-induced expression of pathogen response genes, while DAF-16 does not. Finally, we used genetic analysis to show that PMK-1 contributes to the enhanced longevity of daf-2 mutants. We propose that the PMK-1 pathway is a specific, indispensable immunity pathway that mediates expression of secreted immune response genes, while the DAF-2–DAF-16 pathway appears to regulate immunity as part of a more general stress response. The contribution of the PMK-1 pathway to the enhanced lifespan of daf-2 mutants suggests that innate immunity is an important determinant of longevity

    Genomic, Pathway Network, and Immunologic Features Distinguishing Squamous Carcinomas

    Get PDF
    This integrated, multiplatform PanCancer Atlas study co-mapped and identified distinguishing molecular features of squamous cell carcinomas (SCCs) from five sites associated with smokin

    Pan-Cancer Analysis of lncRNA Regulation Supports Their Targeting of Cancer Genes in Each Tumor Context

    Get PDF
    Long noncoding RNAs (lncRNAs) are commonly dys-regulated in tumors, but only a handful are known toplay pathophysiological roles in cancer. We inferredlncRNAs that dysregulate cancer pathways, onco-genes, and tumor suppressors (cancer genes) bymodeling their effects on the activity of transcriptionfactors, RNA-binding proteins, and microRNAs in5,185 TCGA tumors and 1,019 ENCODE assays.Our predictions included hundreds of candidateonco- and tumor-suppressor lncRNAs (cancerlncRNAs) whose somatic alterations account for thedysregulation of dozens of cancer genes and path-ways in each of 14 tumor contexts. To demonstrateproof of concept, we showed that perturbations tar-geting OIP5-AS1 (an inferred tumor suppressor) andTUG1 and WT1-AS (inferred onco-lncRNAs) dysre-gulated cancer genes and altered proliferation ofbreast and gynecologic cancer cells. Our analysis in-dicates that, although most lncRNAs are dysregu-lated in a tumor-specific manner, some, includingOIP5-AS1, TUG1, NEAT1, MEG3, and TSIX, synergis-tically dysregulate cancer pathways in multiple tumorcontexts

    Spatial Organization and Molecular Correlation of Tumor-Infiltrating Lymphocytes Using Deep Learning on Pathology Images

    Get PDF
    Beyond sample curation and basic pathologic characterization, the digitized H&E-stained images of TCGA samples remain underutilized. To highlight this resource, we present mappings of tumorinfiltrating lymphocytes (TILs) based on H&E images from 13 TCGA tumor types. These TIL maps are derived through computational staining using a convolutional neural network trained to classify patches of images. Affinity propagation revealed local spatial structure in TIL patterns and correlation with overall survival. TIL map structural patterns were grouped using standard histopathological parameters. These patterns are enriched in particular T cell subpopulations derived from molecular measures. TIL densities and spatial structure were differentially enriched among tumor types, immune subtypes, and tumor molecular subtypes, implying that spatial infiltrate state could reflect particular tumor cell aberration states. Obtaining spatial lymphocytic patterns linked to the rich genomic characterization of TCGA samples demonstrates one use for the TCGA image archives with insights into the tumor-immune microenvironment

    Pan-cancer Alterations of the MYC Oncogene and Its Proximal Network across the Cancer Genome Atlas

    Get PDF
    Although theMYConcogene has been implicated incancer, a systematic assessment of alterations ofMYC, related transcription factors, and co-regulatoryproteins, forming the proximal MYC network (PMN),across human cancers is lacking. Using computa-tional approaches, we define genomic and proteo-mic features associated with MYC and the PMNacross the 33 cancers of The Cancer Genome Atlas.Pan-cancer, 28% of all samples had at least one ofthe MYC paralogs amplified. In contrast, the MYCantagonists MGA and MNT were the most frequentlymutated or deleted members, proposing a roleas tumor suppressors.MYCalterations were mutu-ally exclusive withPIK3CA,PTEN,APC,orBRAFalterations, suggesting that MYC is a distinct onco-genic driver. Expression analysis revealed MYC-associated pathways in tumor subtypes, such asimmune response and growth factor signaling; chro-matin, translation, and DNA replication/repair wereconserved pan-cancer. This analysis reveals insightsinto MYC biology and is a reference for biomarkersand therapeutics for cancers with alterations ofMYC or the PMN
    corecore