26 research outputs found

    Proposing a Governance model for environmental crises

    Get PDF
    During August 2021, a wildfire outbreak in Evia, Greece's second largest island, resulted in a major environmental and economic crisis. Apart from biodiversity and habitat loss, the disaster triggered a financial crisis because it wiped out wood-productive forests and outdoor areas that attract visitors. This crisis highlighted the need for a new governance model in order to respond to environmental crises more effectively. The aim of this study was to investigate the acceptance and attitudes of relevant stakeholders towards establishing a Hub a proposed governance model responsible for monitoring and restoring the natural capital and biodiversity after environmental crises. Results based on quantitative data collected via questionnaires showed that most respondents were positive to the Hub and perceived that its main functions should be to recommend measures after environmental crises and to facilitate cooperation among involved stakeholders. Moreover, results pointed to preferred funding sources, stakeholder groups that should participate in the Hub and key performance indicators (KPIs) for monitoring Hub's performance. The applied methodology could guide the establishment of governance models both in the study area and other countries facing environmental crises

    Low-Complexity 3D-DWT video encoder applicable to IPTV

    Full text link
    3D-DWT encoders are good candidates for applications like professional video editing, IPTV video surveillance, live event IPTV broadcast, multispectral satellite imaging, HQ video delivery, etc., where a frame must be reconstructed as fast as possible. However, the main drawback of the algorithms that compute the 3D-DWT is the huge memory requirement in practical implementations. In this paper, and in order to considerably reduce the memory requirements of this kind of video encoders, we present a new 3D-DWT video encoder based on (a) the use of a novel frame-based 3D-DWT transform that avoids video sequence partitioning in Groups Of Pictures (GOP) and (b) a very fast run-length encoder. Furthermore, an exhaustive evaluation of the proposed encoder (3D-RLW) has been performed, analyzing the sensibility of the ¿lters employed in the 3D-DWT transform and comparing the evaluation results with other video encoders in terms of R/D, coding/decoding delay and memory consumptionThanks to Spanish Ministry of Education and Science under grants DPI2007-66796-C03-03 for funding.López ., O.; Piñol ., P.; Martinez Rach, MO.; Perez Malumbres, MJ.; Oliver Gil, JS. (2011). Low-Complexity 3D-DWT video encoder applicable to IPTV. Signal Processing: Image Communication. 26(7):358-369. https://doi.org/10.1016/j.image.2011.01.008S35836926

    SNAPSHOT USA 2020: A second coordinated national camera trap survey of the United States during the COVID-19 pandemic

    Get PDF
    Managing wildlife populations in the face of global change requires regular data on the abundance and distribution of wild animals, but acquiring these over appropriate spatial scales in a sustainable way has proven challenging. Here we present the data from Snapshot USA 2020, a second annual national mammal survey of the USA. This project involved 152 scientists setting camera traps in a standardized protocol at 1485 locations across 103 arrays in 43 states for a total of 52,710 trap-nights of survey effort. Most (58) of these arrays were also sampled during the same months (September and October) in 2019, providing a direct comparison of animal populations in 2 years that includes data from both during and before the COVID-19 pandemic. All data were managed by the eMammal system, with all species identifications checked by at least two reviewers. In total, we recorded 117,415 detections of 78 species of wild mammals, 9236 detections of at least 43 species of birds, 15,851 detections of six domestic animals and 23,825 detections of humans or their vehicles. Spatial differences across arrays explained more variation in the relative abundance than temporal variation across years for all 38 species modeled, although there are examples of significant site-level differences among years for many species. Temporal results show how species allocate their time and can be used to study species interactions, including between humans and wildlife. These data provide a snapshot of the mammal community of the USA for 2020 and will be useful for exploring the drivers of spatial and temporal changes in relative abundance and distribution, and the impacts of species interactions on daily activity patterns. There are no copyright restrictions, and please cite this paper when using these data, or a subset of these data, for publication

    SNAPSHOT USA 2019: a coordinated national camera trap survey of the United States

    Get PDF
    With the accelerating pace of global change, it is imperative that we obtain rapid inventories of the status and distribution of wildlife for ecological inferences and conservation planning. To address this challenge, we launched the SNAPSHOT USA project, a collaborative survey of terrestrial wildlife populations using camera traps across the United States. For our first annual survey, we compiled data across all 50 states during a 14-week period (17 August-24 November of 2019). We sampled wildlife at 1,509 camera trap sites from 110 camera trap arrays covering 12 different ecoregions across four development zones. This effort resulted in 166,036 unique detections of 83 species of mammals and 17 species of birds. All images were processed through the Smithsonian's eMammal camera trap data repository and included an expert review phase to ensure taxonomic accuracy of data, resulting in each picture being reviewed at least twice. The results represent a timely and standardized camera trap survey of the United States. All of the 2019 survey data are made available herein. We are currently repeating surveys in fall 2020, opening up the opportunity to other institutions and cooperators to expand coverage of all the urban-wild gradients and ecophysiographic regions of the country. Future data will be available as the database is updated at eMammal.si.edu/snapshot-usa, as will future data paper submissions. These data will be useful for local and macroecological research including the examination of community assembly, effects of environmental and anthropogenic landscape variables, effects of fragmentation and extinction debt dynamics, as well as species-specific population dynamics and conservation action plans. There are no copyright restrictions; please cite this paper when using the data for publication

    SNAPSHOT USA 2019 : a coordinated national camera trap survey of the United States

    Get PDF
    This article is protected by copyright. All rights reserved.With the accelerating pace of global change, it is imperative that we obtain rapid inventories of the status and distribution of wildlife for ecological inferences and conservation planning. To address this challenge, we launched the SNAPSHOT USA project, a collaborative survey of terrestrial wildlife populations using camera traps across the United States. For our first annual survey, we compiled data across all 50 states during a 14-week period (17 August - 24 November of 2019). We sampled wildlife at 1509 camera trap sites from 110 camera trap arrays covering 12 different ecoregions across four development zones. This effort resulted in 166,036 unique detections of 83 species of mammals and 17 species of birds. All images were processed through the Smithsonian's eMammal camera trap data repository and included an expert review phase to ensure taxonomic accuracy of data, resulting in each picture being reviewed at least twice. The results represent a timely and standardized camera trap survey of the USA. All of the 2019 survey data are made available herein. We are currently repeating surveys in fall 2020, opening up the opportunity to other institutions and cooperators to expand coverage of all the urban-wild gradients and ecophysiographic regions of the country. Future data will be available as the database is updated at eMammal.si.edu/snapshot-usa, as well as future data paper submissions. These data will be useful for local and macroecological research including the examination of community assembly, effects of environmental and anthropogenic landscape variables, effects of fragmentation and extinction debt dynamics, as well as species-specific population dynamics and conservation action plans. There are no copyright restrictions; please cite this paper when using the data for publication.Publisher PDFPeer reviewe

    Retrieval of Leaf Area Index Using Sentinel-2 Imagery in a Mixed Mediterranean Forest Area

    No full text
    Leaf area index (LAI) is a crucial biophysical indicator for assessing and monitoring the structure and functions of forest ecosystems. Improvements in remote sensing instrumental characteristics and the availability of more efficient statistical algorithms, elevate the potential for more accurate models of vegetation biophysical properties including LAI. The aim of this study was to assess the spectral information of Sentinel-2 MSI satellite imagery for the retrieval of LAI over a mixed forest ecosystem located in northwest Greece. Forty-eight field plots were visited for the collection of ground LAI measurements using an ACCUPAR LP-80: PAR & LAI Ceptometer. Spectral bands and spectral indices were used for LAI model development using the Gaussian processes regression (GPR) algorithm. A variable selection procedure was applied to improve the model’s prediction accuracy, and variable importance was investigated for identifying the most informative variables. The model resulting from spectral indices’ variables selection produced the most precise predictions of LAI with a coefficient of determination of 0.854. Shortwave infrared bands and the normalized canopy index (NCI) were identified as the most important features for LAI prediction

    Predicting Tree Species Diversity Using Geodiversity and Sentinel-2 Multi-Seasonal Spectral Information

    No full text
    Measuring and monitoring tree diversity is a prerequisite for altering biodiversity loss and the sustainable management of forest ecosystems. High temporal satellite remote sensing, recording difference in species phenology, can facilitate the extraction of timely, standardized and reliable information on tree diversity, complementing or replacing traditional field measurements. In this study, we used multispectral and multi-seasonal remotely sensed data from the Sentinel-2 satellite sensor along with geodiversity data for estimating local tree diversity in a Mediterranean forest area. One hundred plots were selected for in situ inventory of tree species and measurement of tree diversity using the Simpson’s (D1) and Shannon (H′) diversity indices. Four Sentinel-2 scenes and geodiversity variables, including elevation, aspect, moisture, and basement rock type, were exploited through a random forest regression algorithm for predicting the two diversity indices. The multi-seasonal models presented the highest accuracy for both indices with an R2 up to 0.37. In regard to the single season, spectral-only models, mid-summer and mid-autumn model also demonstrated satisfactory accuracy (max R2 = 0.28). On the other hand, the accuracy of the spectral-only early-spring and early-autumn models was significant lower (max R2 = 0.16), although it was improved with the use of geodiversity information (max R2 = 0.25)

    Concept of the Intermediate Olympic Games of 1906: Continuity with the Past Olympics

    No full text

    National Set of MAES Indicators in Greece: Ecosystem Services and Management Implications

    No full text
    Research Highlights: The developed National Set of Indicators for the Mapping and Assessment of Ecosystems and their Services (MAES) implementation in Greece at the national level sets the official, national basis on which future studies will be conducted for MAES reporting for the achievement of targets within the National and the European Union (EU) biodiversity Strategy. Background and Objectives: Greece is currently developing and implementing a MAES nation-wide program based on the region’s unique characteristics following the proposed methodologies by the European Commission, in the frame of the LIFE-IP 4 NATURA project (Integrated actions for the conservation and management of Natura 2000 sites, species, habitats and ecosystems in Greece). In this paper, we present the steps followed to compile standardized MAES indicators for Greece that include: (a) collection and review of the available MAES-related datasets, (b) shortcomings and limitations encountered and overcome, (c) identification of data gaps and (d) assumptions and framework setting. Correspondence to EU and National Strategies and Policies are also examined to provide an initial guidance for detailed thematic studies. Materials and Methods: We followed the requirements of the EU MAES framework for ecosystem services and ecosystem condition indicator selection. Ecosystem services reported under the selected indicators were assigned following the Common International Classification of Ecosystem Services. Spatial analysis techniques were applied to create relevant thematic maps. Results: A set of 40 MAES indicators was drafted, distributed in six general indicator groups, i.e., Biodiversity, Environmental quality, Food, material and energy, Forestry, Recreation and Water resources. The protocols for the development and implementation of an indicator were also drafted and adopted for future MAES studies in Greece, providing guidance for adaptive development and adding extra indicators when and where needed. Thematic maps representing ecosystem services (ES) bundles and ES hotspots were also created to identify areas of ES importance and simultaneously communicate the results at the national and regional levels
    corecore