25 research outputs found

    Translation from Classical Two-Way Automata to Pebble Two-Way Automata

    Get PDF
    We study the relation between the standard two-way automata and more powerful devices, namely, two-way finite automata with an additional "pebble" movable along the input tape. Similarly as in the case of the classical two-way machines, it is not known whether there exists a polynomial trade-off, in the number of states, between the nondeterministic and deterministic pebble two-way automata. However, we show that these two machine models are not independent: if there exists a polynomial trade-off for the classical two-way automata, then there must also exist a polynomial trade-off for the pebble two-way automata. Thus, we have an upward collapse (or a downward separation) from the classical two-way automata to more powerful pebble automata, still staying within the class of regular languages. The same upward collapse holds for complementation of nondeterministic two-way machines. These results are obtained by showing that each pebble machine can be, by using suitable inputs, simulated by a classical two-way automaton with a linear number of states (and vice versa), despite the existing exponential blow-up between the classical and pebble two-way machines

    NMDA Receptor Hypofunction Leads to Generalized and Persistent Aberrant γ Oscillations Independent of Hyperlocomotion and the State of Consciousness

    Get PDF
    International audienceNMDAr antagonists acutely produces, in the rodent CNS, generalized aberrant gamma oscillations, which are not dependent on hyperlocomotion-related brain state or conscious sensorimotor processing. These findings suggest that NMDAr hypofunction-related generalized gamma hypersynchronies represent an aberrant diffuse network noise, a potential electrophysiological correlate of a psychotic-like state. Such generalized noise might cause dysfunction of brain operations, including the impairments in cognition and sensorimotor integration seen in schizophrenia

    Priority evacuation from a disk using mobile robots

    No full text
    We introduce and study a new search-type problem with (n+1)-robots on a disk. The searchers (robots) all start from the center of the disk, have unit speed, and can communicate wirelessly. The goal is for a distinguished robot (the queen) to reach and evacuate from an exit that is hidden on the perimeter of the disk in as little time as possible. The remaining n robots (servants) are there to facilitate the queen’s objective and are not required to reach the hidden exit. We provide upper and lower bounds for the time required to evacuate the queen. Namely, we propose an algorithm specifying the trajectories of the robots which guarantees evacuation of the queen in time always better than (formula presented) for n ≥

    Electrical coupling underlies high-frequency oscillations in the hippocampus in vitro

    No full text
    Coherent oscillations, in which ensembles of neurons fire in a repeated and synchronous manner, are thought to be important in higher brain functions. In the hippocampus, these discharges are categorized according to their frequency as theta (4-10Hz), {gamma} (20-80 Hz) and high-frequency (approximately 200 Hz) discharges, and they occur in relation to different behavioural states. The synaptic bases of theta and {gamma} rhythms have been extensively studied but the cellular bases for high-frequency oscillations are not understood. Here we report that high-frequency network oscillations are present in rat brain slices in vitro, occurring as a brief series of repetitive population spikes at 150-200 Hz in all hippocampal principal cell layers. Moreover, this synchronous activity is not mediated through the more commonly studied modes of chemical synaptic transmission, but is in fact a result of direct electrotonic coupling of neurons, most likely through gap-junctional connections. Thus high-frequency oscillations synchronize the activity of electrically coupled subsets of principal neurons within the well-documented synaptic network of the hippocampus
    corecore