125 research outputs found

    Submersed Aquatic Vegetation in Chesapeake Bay: Sentinel Species in a Changing World

    Get PDF
    Chesapeake Bay has undergone profound changes since European settlement. Increases in human and livestock populations, associated changes in land use, increases in nutrient loadings, shoreline armoring, and depletion of fish stocks have altered the important habitats within the Bay. Submersed aquatic vegetation (SAV) is a critical foundational habitat and provides numerous benefits and services to society. In Chesapeake Bay, SAV species are also indicators of environmental change because of their sensitivity to water quality and shoreline development. As such, SAV has been deeply integrated into regional regulations and annual assessments of management outcomes, restoration efforts, the scientific literature, and popular media coverage. Even so, SAV in Chesapeake Bay faces many historical and emerging challenges. The future of Chesapeake Bay is indicated by and contingent on the success of SAV. Its persistence will require continued action, coupled with new practices, to promote a healthy and sustainable ecosystem

    Retinal Expression of Wnt-Pathway Mediated Genes in Low-Density Lipoprotein Receptor-Related Protein 5 (Lrp5) Knockout Mice

    Get PDF
    Mutations in low-density lipoprotein receptor-related protein 5 (Lrp5) impair retinal angiogenesis in patients with familial exudative vitreoretinopathy (FEVR), a rare type of blinding vascular eye disease. The defective retinal vasculature phenotype in human FEVR patients is recapitulated in Lrp5 knockout (Lrp5/)(Lrp5^{-/-}) mouse with delayed and incomplete development of retinal vessels. In this study we examined gene expression changes in the developing Lrp5/Lrp5^{−/−} mouse retina to gain insight into the molecular mechanisms that underlie the pathology of FEVR in humans. Gene expression levels were assessed with an Illumina microarray on total RNA from Lrp5/Lrp5^{−/−} and WT retinas isolated on postnatal day (P) 8. Regulated genes were confirmed using RT-qPCR analysis. Consistent with a role in vascular development, we identified expression changes in genes involved in cell-cell adhesion, blood vessel morphogenesis and membrane transport in Lrp5/Lrp5^{−/−} retina compared to WT retina. In particular, tight junction protein claudin5 and amino acid transporter slc38a5 are both highly down-regulated in Lrp5/Lrp5^{−/−} retina. Similarly, several Wnt ligands including Wnt7b show decreased expression levels. Plasmalemma vesicle associated protein (plvap), an endothelial permeability marker, in contrast, is up-regulated consistent with increased permeability in Lrp5/Lrp5^{−/−} retinas. Together these data suggest that Lrp5 regulates multiple groups of genes that influence retinal angiogenesis and may contribute to the pathogenesis of FEVR

    Long-term Annual Aerial Surveys of Submersed Aquatic Vegetation (SAV) Support Science, Management, and Restoration

    Get PDF
    Aerial surveys of coastal habitats can uniquely inform the science and management of shallow, coastal zones, and when repeated annually,theyrevealchangesthatareotherwisedifficulttoassess fromground-basedsurveys.Thispaperreviewstheutilityofalongterm(1984–present)annualaerialmonitoringprogramforsubmersedaquaticvegetation(SAV)inChesapeakeBay,itstidaltributaries, and nearby Atlantic coastal bays, USA. We present a series of applications that highlight the program’s importance in assessing anthropogenic impacts, gauging water quality status and trends, establishing and evaluating restoration goals, and understanding the impactofcommercialfishingpracticesonbenthichabitats.Theseexamplesdemonstratehowperiodicallyquantifyingcoverageofthis important foundational habitat answers basic research questions locally, as well as globally, and provides essential information to resource managers. New technologies are enabling more frequent and accurate aerial surveys at greater spatial resolution and lower cost. These advances will support efforts to extend the applications described here to similar issues in other areas

    A four-helix bundle stores copper for methane oxidation

    Get PDF
    Methane-oxidising bacteria (methanotrophs) require large quantities of copper for the membrane-bound (particulate) methane monooxygenase (pMMO). Certain methanotrophs are also able to switch to using the iron-containing soluble MMO (sMMO) to catalyse methane oxidation, with this switchover regulated by copper. MMOs are Nature’s primary biological mechanism for suppressing atmospheric levels of methane, a potent greenhouse gas. Furthermore, methanotrophs and MMOs have enormous potential in bioremediation and for biotransformations producing bulk and fine chemicals, and in bioenergy, particularly considering increased methane availability from renewable sources and hydraulic fracturing of shale rock. We have discovered and characterised a novel copper storage protein (Csp1) from the methanotroph Methylosinus trichosporium OB3b that is exported from the cytosol, and stores copper for pMMO. Csp1 is a tetramer of 4-helix bundles with each monomer binding up to 13 Cu(I) ions in a previously unseen manner via mainly Cys residues that point into the core of the bundle. Csp1 is the first example of a protein that stores a metal within an established protein-folding motif. This work provides a detailed insight into how methanotrophs accumulate copper for the oxidation of methane. Understanding this process is essential if the wide-ranging biotechnological applications of methanotrophs are to be realised. Cytosolic homologues of Csp1 are present in diverse bacteria thus challenging the dogma that such organisms do not use copper in this location

    Liquid – liquid phase separation morphologies in ultra-white beetle scales and a synthetic equivalent

    Get PDF
    Cyphochilus beetle scales are amongst the brightest structural whites in nature, being highly opacifying whilst extremely thin. However, the formation mechanism for the voided intra- scale structure is unknown. Here we report 3D x-ray nanotomography data for the voided chitin networks of intact white scales of Cyphochilus and Lepidiota stigma. Chitin-filling frac- tions are found to be 31 ± 2% for Cyphochilus and 34 ± 1% for Lepidiota stigma, indicating previous measurements overestimated their density. Optical simulations using finite- difference time domain for the chitin morphologies and simulated Cahn-Hilliard spinodal structures show excellent agreement. Reflectance curves spanning filling fraction of 5-95% for simulated spinodal structures, pinpoint optimal whiteness for 25% chitin filling. We make a simulacrum from a polymer undergoing a strong solvent quench, resulting in highly reflective ( 94%) white films. In-situ X-ray scattering confirms the nanostructure is formed through spinodal decomposition phase separation. We conclude that the ultra-white beetle scale nanostructure is made via liquid–liquid phase separation

    Prisoners’ Families’ Research: Developments, Debates and Directions

    Get PDF
    After many years of relative obscurity, research on prisoners’ families has gained significant momentum. It has expanded from case-oriented descriptive analyses of family experiences to longitudinal studies of child and family development and even macro analyses of the effects on communities in societies of mass incarceration. Now the field engages multi-disciplinary and international interest although it arguably still remains on the periphery of mainstream criminological, psychological and sociological research agendas. This chapter discusses developments in prisoners’ families’ research and its positioning in academia and practice. It does not aim to provide an all-encompassing review of the literature rather it will offer some reflections on how and why the field has developed as it has and on its future directions. The chapter is divided into three parts. The first discusses reasons for the historically small body of research on prisoners’ families and for the growth in research interest over the past two decades. The second analyses patterns and shifts in the focus of research studies and considers how the field has been shaped by intersecting disciplinary interests of psychology, sociology, criminology and socio-legal studies. The final part reflects on substantive and ethical issues that are likely to shape the direction of prisoners’ families’ research in the future

    Loss of Metal Ions, Disulfide Reduction and Mutations Related to Familial ALS Promote Formation of Amyloid-Like Aggregates from Superoxide Dismutase

    Get PDF
    Mutations in the gene encoding Cu-Zn superoxide dismutase (SOD1) are one of the causes of familial amyotrophic lateral sclerosis (FALS). Fibrillar inclusions containing SOD1 and SOD1 inclusions that bind the amyloid-specific dye thioflavin S have been found in neurons of transgenic mice expressing mutant SOD1. Therefore, the formation of amyloid fibrils from human SOD1 was investigated. When agitated at acidic pH in the presence of low concentrations of guanidine or acetonitrile, metalated SOD1 formed fibrillar material which bound both thioflavin T and Congo red and had circular dichroism and infrared spectra characteristic of amyloid. While metalated SOD1 did not form amyloid-like aggregates at neutral pH, either removing metals from SOD1 with its intramolecular disulfide bond intact or reducing the intramolecular disulfide bond of metalated SOD1 was sufficient to promote formation of these aggregates. SOD1 formed amyloid-like aggregates both with and without intermolecular disulfide bonds, depending on the incubation conditions, and a mutant SOD1 lacking free sulfhydryl groups (AS-SOD1) formed amyloid-like aggregates at neutral pH under reducing conditions. ALS mutations enhanced the ability of disulfide-reduced SOD1 to form amyloid-like aggregates, and apo-AS-SOD1 formed amyloid-like aggregates at pH 7 only when an ALS mutation was also present. These results indicate that some mutations related to ALS promote formation of amyloid-like aggregates by facilitating the loss of metals and/or by making the intramolecular disulfide bond more susceptible to reduction, thus allowing the conversion of SOD1 to a form that aggregates to form resembling amyloid. Furthermore, the occurrence of amyloid-like aggregates per se does not depend on forming intermolecular disulfide bonds, and multiple forms of such aggregates can be produced from SOD1

    Epithelial dysregulation in obese severe asthmatics with gastro-oesophageal reflux

    Get PDF

    Rheumatoid arthritis - treatment: 180. Utility of Body Weight Classified Low-Dose Leflunomide in Japanese Rheumatoid Arthritis

    Get PDF
    Background: In Japan, more than 20 rheumatoid arthritis (RA) patients died of interstitial pneumonia (IP) caused by leflunomide (LEF) were reported, but many of them were considered as the victims of opportunistic infection currently. In this paper, efficacy and safety of low-dose LEF classified by body weight (BW) were studied. Methods: Fifty-nine RA patients were started to administrate LEF from July 2007 to July 2009. Among them, 25 patients were excluded because of the combination with tacrolimus, and medication modification within 3 months before LEF. Remaining 34 RA patients administered 20 to 50 mg/week of LEF were followed up for 1 year and enrolled in this study. Dose of LEF was classified by BW (50 mg/week for over 50 kg, 40 mg/week for 40 to 50 kg and 20 to 30 mg/week for under 40 kg). The average age and RA duration of enrolled patients were 55.5 years old and 10.2 years. Prednisolone (PSL), methotrexate (MTX) and etanercept were used in 23, 28 and 2 patients, respectively. In case of insufficient response or adverse effect, dosage change or discontinuance of LEF were considered. Failure was defined as dosages up of PSL and MTX, or dosages down or discontinuance of LEF. Last observation carried forward method was used for the evaluation of failed patients at 1 year. Results: At 1 year after LEF start, good/ moderate/ no response assessed by the European League Against Rheumatism (EULAR) response criteria using Disease Activity Score, including a 28-joint count (DAS28)-C reactive protein (CRP) were showed in 14/ 10/ 10 patients, respectively. The dosage changes of LEF at 1 year were dosage up: 10, same dosage: 5, dosage down: 8 and discontinuance: 11 patients. The survival rate of patients in this study was 23.5% (24 patients failed) but actual LEF continuous rate was 67.6% (11 patients discontinued) at 1 year. The major reason of failure was liver dysfunction, and pneumocystis pneumonia was occurred in 1 patient resulted in full recovery. One patient died of sepsis caused by decubitus ulcer infection. DAS28-CRP score was decreased from 3.9 to 2.7 significantly. Although CRP was decreased from 1.50 to 0.93 mg/dl, it wasn't significant. Matrix metalloproteinase (MMP)-3 was decreased from 220.0 to 174.2 ng/ml significantly. Glutamate pyruvate transaminase (GPT) was increased from 19 to 35 U/l and number of leukocyte was decreased from 7832 to 6271 significantly. DAS28-CRP, CRP, and MMP-3 were improved significantly with MTX, although they weren't without MTX. Increase of GPT and leukopenia were seen significantly with MTX, although they weren't without MTX. Conclusions: It was reported that the risks of IP caused by LEF in Japanese RA patients were past IP history, loading dose administration and low BW. Addition of low-dose LEF is a potent safe alternative for the patients showing unsatisfactory response to current medicines, but need to pay attention for liver function and infection caused by leukopenia, especially with MTX. Disclosure statement: The authors have declared no conflicts of interes
    corecore