392 research outputs found

    Flux-ratio anomalies from discs and other baryonic structures in the Illustris simulation

    Get PDF
    The flux ratios in the multiple images of gravitationally lensed quasars can provide evidence for dark matter substructure in the halo of the lensing galaxy if the flux ratios differ from those predicted by a smooth model of the lensing galaxy mass distribution. However, it is also possible that baryonic structures in the lensing galaxy, such as edge-on discs, can produce flux-ratio anomalies. In this work, we present the first statistical analysis of flux-ratio anomalies due to baryons from a numerical simulation perspective. We select galaxies with various morphological types in the Illustris simulation and ray-trace through the simulated halos, which include baryons in the main lensing galaxies but exclude any substructures, in order to explore the pure baryonic effects. Our ray-tracing results show that the baryonic components can be a major contribution to the flux-ratio anomalies in lensed quasars and that edge-on disc lenses induce the strongest anomalies. We find that the baryonic components increase the probability of finding high flux-ratio anomalies in the early-type lenses by about 8% and by about 10 - 20% in the disc lenses. The baryonic effects also induce astrometric anomalies in 13% of the mock lenses. Our results indicate that the morphology of the lens galaxy becomes important in the analysis of flux-ratio anomalies when considering the effect of baryons, and that the presence of baryons may also partially explain the discrepancy between the observed (high) anomaly frequency and what is expected due to the presence of subhalos as predicted by the CDM simulations.Comment: 16 pages, 11 figures, accepted by MNRA

    Managing scheduled routing with a high-level communications language

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 1997.Includes bibliographical references (p. 152-156).by Christopher D. Metcalf.Ph.D

    Collisional Control of Ground State Polar Molecules and Universal Dipolar Scattering

    Full text link
    We explore the impact of the short range interaction on the scattering of ground state polar molecules, and study the transition from a weak to strong dipolar scattering over an experimentally reasonable range of energies and electric field values. In the strong dipolar limit, the scattering scales with respect to a dimensionless quantity defined by mass, induced dipole moment, and collision energy. The scaling has implications for all quantum mechanical dipolar scattering, and therefore this universal dipolar scaling provides estimates of scattering cross sections for any dipolar system.Comment: 4 pages, 2 figure

    Identifying strong lenses with unsupervised machine learning using convolutional autoencoder

    Get PDF
    In this paper, we develop a new unsupervised machine learning technique comprised of a feature extractor, a convolutional autoencoder, and a clustering algorithm consisting of a Bayesian Gaussian mixture model. We apply this technique to visual band space-based simulated imaging data from the Euclid Space Telescope using data from the strong gravitational lenses finding challenge. Our technique promisingly captures a variety of lensing features such as Einstein rings with different radii, distorted arc structures, etc., without using predefined labels. After the clustering process, we obtain several classification clusters separated by different visual features which are seen in the images. Our method successfully picks up 3c63 per cent of lensing images from all lenses in the training set. With the assumed probability proposed in this study, this technique reaches an accuracy of 77.25 \ub1 0.48 per cent in binary classification using the training set. Additionally, our unsupervised clustering process can be used as the preliminary classification for future surveys of lenses to efficiently select targets and to speed up the labelling process. As the starting point of the astronomical application using this technique, we not only explore the application to gravitationally lensed systems, but also discuss the limitations and potential future uses of this technique

    Brown Dwarfs in Young Moving Groups from Pan-STARRS1. I. AB Doradus

    Full text link
    Substellar members of young (\lesssim150 Myr) moving groups are valuable benchmarks to empirically define brown dwarf evolution with age and to study the low-mass end of the initial mass function. We have combined Pan-STARRS1 (PS1) proper motions with optical-IR photometry from PS1, 2MASS and WISE\textit{WISE} to search for substellar members of the AB Dor Moving Group within \approx50 pc and with spectral types of late-M to early-L, corresponding to masses down to \approx30 MJup_{Jup} at the age of the group (\approx125 Myr). Including both photometry and proper motions allows us to better select candidates by excluding field dwarfs whose colors are similar to young AB~Dor Moving Group members. Our near-IR spectroscopy has identified six ultracool dwarfs (M6-L4; \approx30-100 MJup_{Jup}) with intermediate surface gravities (INT-G) as candidate members of the AB Dor Moving Group. We find another two candidate members with spectra showing hints of youth but consistent with field gravities. We also find four field brown dwarfs unassociated with the AB Dor Moving Group, three of which have INT-G gravity classification. While signatures of youth are present in the spectra of our \approx125 Myr objects, neither their JKJ-K nor W1W2W1-W2 colors are significantly redder than field dwarfs with the same spectral types, unlike younger ultracool dwarfs. We also determined PS1 parallaxes for eight of our candidates and one previously identified AB Dor Moving Group candidate. Although radial velocities (and parallaxes, for some) are still needed to fully assess membership, these new objects provide valuable insight into the spectral characteristics and evolution of young brown dwarfs.Comment: ApJ, accepte

    The Transverse Peculiar Velocity of the Q2237+0305 Lens Galaxy and the Mean Mass of Its Stars

    Get PDF
    Using 11-years of OGLE V-band photometry of Q2237+0305, we measure the transverse velocity of the lens galaxy and the mean mass of its stars. We can do so because, for the first time, we fully include the random motions of the stars in the lens galaxy in the analysis of the light curves. In doing so, we are also able to correctly account for the Earth's parallax motion and the rotation of the lens galaxy, further reducing systematic errors. We measure a lower limit on the transverse speed of the lens galaxy, v_t > 338 km/s (68% confidence) and find a preferred direction to the East. The mean stellar mass estimate including a well-defined velocity prior is 0.12 <= 1.94 at 68% confidence, with a median of 0.52 Msun. We also show for the first time that analyzing subsets of a microlensing light curve, in this case the first and second halves of the OGLE V-band light curve, give mutually consistent physical results.Comment: 11 pages, 9 figures, 1 table; animated magnification pattern video can be found at http://www.astronomy.ohio-state.edu/~sdp/animation.avi; accepted for publication in Ap
    corecore