169 research outputs found
Study of the Perceived Effects of a Parental Empowerment Project for Parents of Students of Color
Thesis advisor: Irwin BlumerThis study examines the perceived impact of a parental empowerment project on parents of students of color transitioning into high school. The overarching problem addressed is the achievement gap. The study is an investigation of a means to increase the involvement of parents of color at an important transition. This is a gap closing measure because research dictates that this type of intervention can lead to higher academic achievement for minority students. To this end, seven participants constitute the sample group. Each sample member is treated as an individual case in keeping with the study's design as a qualitative case study. This study seeks to determine how these seven parents had their attitudes and behaviors shifted as a result of their participation in the aforementioned project, and which factors supported and inhibited their involvement as their children transitioned into high school. The researcher finds that all of the sample members perceived some benefit from their participation. These benefits for the parents include fostering a greater role understanding, increased ability to hold their children accountable, and an increased understanding of the high school curriculum. The monthly parent meetings, one of the three elements comprising the empowerment program, were most helpful for parents. Whereas, the scheduling of meetings made it difficult for members of the sample to be as involved as they wanted to be. Ultimately, the study concludes that a program which involves parents during their children's high school transition can help them increase their own sense of efficacy. It suggests opportunities for further research to be done on the impact of such a program on the actual academic performance of students.Thesis (EdD) — Boston College, 2009.Submitted to: Boston College. Lynch School of Education.Discipline: Educational Administration
Microwave irradiation enhances the <i>in vitro </i>antifungal activity of citrus by-product aqueous extracts against <i>Alternaria alternata</i>
The effect of two lemon by-product aqueous extracts at different concentrations (14, 7, 3.5 and 1 mg mL−1) was tested against the in vitro growth of Alternaria alternata. Prior to extraction, one batch of by-product was dehydrated by freeze-drying (untreated by-product), while the other batch was treated by microwave irradiation in conjunction with freeze-drying (microwave-treated by-product). High-performance liquid chromatography (HPLC) was employed for the identification of individual phenolic compounds with potent antifungal activities. Both lemon by-product aqueous extracts inhibited the mycelial growth and suppressed the spore germination of the fungus in a concentration-dependent manner. In general, the extracts obtained from the microwave-treated lemon by-product displayed enhanced antifungal activity than those obtained from the untreated one. Scanning electron microscopy (SEM) revealed that both lemon by-product extracts affected the hyphal morphology of the fungus. The antifungal activity of the extracts was attributed to their phenolic acid and ascorbic acid contents
Recommended from our members
Simple uncertainty frameworks for selecting weighting schemes and interpreting multimodel ensemble climate change experiments
Future climate change projections are often derived from ensembles of simulations from multiple global circulation models using heuristic weighting schemes. This study provides a more rigorous justification for this by introducing a nested family of three simple analysis of variance frameworks. Statistical frameworks are essential in order to quantify the uncertainty associated with the estimate of the mean climate change response.
The most general framework yields the “one model, one vote” weighting scheme often used in climate projection. However, a simpler additive framework is found to be preferable when the climate change response is not strongly model dependent. In such situations, the weighted multimodel mean may be interpreted as an estimate of the actual climate response, even in the presence of shared model biases.
Statistical significance tests are derived to choose the most appropriate framework for specific multimodel ensemble data. The framework assumptions are explicit and can be checked using simple tests and graphical techniques. The frameworks can be used to test for evidence of nonzero climate response and to construct confidence intervals for the size of the response.
The methodology is illustrated by application to North Atlantic storm track data from the Coupled Model Intercomparison Project phase 5 (CMIP5) multimodel ensemble. Despite large variations in the historical storm tracks, the cyclone frequency climate change response is not found to be model dependent over most of the region. This gives high confidence in the response estimates. Statistically significant decreases in cyclone frequency are found on the flanks of the North Atlantic storm track and in the Mediterranean basin
Noncoding deletions reveal a gene that is critical for intestinal function.
Large-scale genome sequencing is poised to provide a substantial increase in the rate of discovery of disease-associated mutations, but the functional interpretation of such mutations remains challenging. Here we show that deletions of a sequence on human chromosome 16 that we term the intestine-critical region (ICR) cause intractable congenital diarrhoea in infants1,2. Reporter assays in transgenic mice show that the ICR contains a regulatory sequence that activates transcription during the development of the gastrointestinal system. Targeted deletion of the ICR in mice caused symptoms that recapitulated the human condition. Transcriptome analysis revealed that an unannotated open reading frame (Percc1) flanks the regulatory sequence, and the expression of this gene was lost in the developing gut of mice that lacked the ICR. Percc1-knockout mice displayed phenotypes similar to those observed upon ICR deletion in mice and patients, whereas an ICR-driven Percc1 transgene was sufficient to rescue the phenotypes found in mice that lacked the ICR. Together, our results identify a gene that is critical for intestinal function and underscore the need for targeted in vivo studies to interpret the growing number of clinical genetic findings that do not affect known protein-coding genes
A Phase 1 Human Immunodeficiency Virus Vaccine Trial for Cross-Profiling the Kinetics of Serum and Mucosal Antibody Responses to CN54gp140 Modulated by Two Homologous Prime-Boost Vaccine Regimens
A key aspect to finding an efficacious human immunodeficiency virus (HIV) vaccine is the optimization of vaccine schedules that can mediate the efficient maturation of protective immune responses. In the present study, we investigated the effect of alternate booster regimens on the immune responses to a candidate HIV-1 clade C CN54gp140 envelope protein, which was coadministered with the TLR4-agonist glucopyranosyl lipid A-aqueous formulation. Twelve study participants received a common three-dose intramuscular priming series followed by a final booster at either 6 or 12 months. The two homologous prime-boost regimens were well tolerated and induced CN54gp140-specific responses that were observed in both the systemic and mucosal compartments. Levels of vaccine-induced IgG-subclass antibodies correlated significantly with Fc gamma R engagement, and both vaccine regimens were associated with strikingly similar patterns in antibody titer and Fc gamma R-binding profiles. In both groups, identical changes in the antigen (Ag)-specific IgG-subclass fingerprint, leading to a decrease in IgG1 and an increase in IgG4 levels, were modulated by booster injections. Here, the dissection of immune profiles further supports the notion that prime-boost strategies are essential for the induction of diverse Ag-specific HIV-1 responses. The results reported here clearly demonstrate that identical responses were effectively and safely induced by both vaccine regimens, indicating that an accelerated 6-month regimen could be employed for the rapid induction of immune responses against CN54gp140 with no apparent impact on the overall quality of the induced immune response. (This study has been registered at http://ClinicalTrials.gov under registration no.NCT01966900.
52 Genetic Loci Influencing Myocardial Mass.
BACKGROUND: Myocardial mass is a key determinant of cardiac muscle function and hypertrophy. Myocardial depolarization leading to cardiac muscle contraction is reflected by the amplitude and duration of the QRS complex on the electrocardiogram (ECG). Abnormal QRS amplitude or duration reflect changes in myocardial mass and conduction, and are associated with increased risk of heart failure and death. OBJECTIVES: This meta-analysis sought to gain insights into the genetic determinants of myocardial mass. METHODS: We carried out a genome-wide association meta-analysis of 4 QRS traits in up to 73,518 individuals of European ancestry, followed by extensive biological and functional assessment. RESULTS: We identified 52 genomic loci, of which 32 are novel, that are reliably associated with 1 or more QRS phenotypes at p < 1 × 10(-8). These loci are enriched in regions of open chromatin, histone modifications, and transcription factor binding, suggesting that they represent regions of the genome that are actively transcribed in the human heart. Pathway analyses provided evidence that these loci play a role in cardiac hypertrophy. We further highlighted 67 candidate genes at the identified loci that are preferentially expressed in cardiac tissue and associated with cardiac abnormalities in Drosophila melanogaster and Mus musculus. We validated the regulatory function of a novel variant in the SCN5A/SCN10A locus in vitro and in vivo. CONCLUSIONS: Taken together, our findings provide new insights into genes and biological pathways controlling myocardial mass and may help identify novel therapeutic targets
Finishing the euchromatic sequence of the human genome
The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead
- …