14 research outputs found

    Molecular Determinants of the Intrinsic Efficacy of the Antipsychotic Aripiprazole

    Get PDF
    Partial agonists of the dopamine D2 receptor (D2R) have been developed to treat the symptoms of schizophrenia without causing the side effects elicited by antagonists. The receptor-ligand interactions that determine the intrinsic efficacy of such drugs, however, are poorly understood. Aripiprazole has an extended structure comprising a phenylpiperazine primary pharmacophore and a 1,2,3,4-tetrahydroquinolin-2-one secondary pharmacophore. We combined site-directed mutagenesis, analytical pharmacology, ligand fragments and molecular dynamics simulations to identify the D2R-aripiprazole interactions that contribute to affinity and efficacy. We reveal that an interaction between the secondary pharmacophore of aripiprazole and a secondary binding pocket defined by residues at the extracellular portions of transmembrane segments 1, 2 and 7 determine the intrinsic efficacy of aripiprazole. Our findings reveal a hitherto unappreciated mechanism through which to fine-tune the intrinsic efficacy of D2R agonists

    Discovery of a novel class of negative allosteric modulator of the dopamine D2 receptor through fragmentation of a bitopic ligand

    Get PDF
    We recently demonstrated that SB269652 (1) engages one protomer of a dopamine D2 receptor (D2R) dimer in a bitopic mode to allosterically inhibit the binding of dopamine at the other protomer. Herein, we investigate structural deter- minants for allostery, focusing on modifications to three moieties within 1. We find that orthosteric “head” groups with small 7-substituents were important to maintain the limited negative cooperativity of analogues of 1, and replacement of the tetrahydroisoquinoline head group with other D2R “privileged structures” generated orthosteric antagonists. Additionally, replacement of the cyclohexylene linker with polymethylene chains conferred linker length dependency in allosteric pharmacology. We validated the importance of the indolic NH as a hydrogen bond donor moiety for maintaining allostery. Replacement of the indole ring with azaindole conferred a 30-fold increase in affinity while maintaining negative cooperativity. Combined, these results provide novel SAR insight for bitopic ligands that act as negative allosteric modulators of the D2R

    Structure–activity study of N-((trans)-4-(2-(7-cyano-3,4-dihydroisoquinolin-2(1H)-yl)ethyl)cyclohexyl)-1H-indole-2-carboxamide (SB269652), a bitopic ligand that acts as a negative allosteric modulator of the dopamine D2 receptor

    Get PDF
    We recently demonstrated that SB269652 (1) engages one protomer of a dopamine D2 receptor (D2R) dimer in a bitopic mode to allosterically inhibit the binding of dopamine at the other protomer. Herein, we investigate structural deter- minants for allostery, focusing on modifications to three moieties within 1. We find that orthosteric “head” groups with small 7-substituents were important to maintain the limited negative cooperativity of analogues of 1, and replacement of the tetrahydroisoquinoline head group with other D2R “privileged structures” generated orthosteric antagonists. Additionally, replacement of the cyclohexylene linker with polymethylene chains conferred linker length dependency in allosteric pharma- cology. We validated the importance of the indolic NH as a hydrogen bond donor moiety for maintaining allostery. Replacement of the indole ring with azaindole conferred a 30-fold increase in affinity while maintaining negative cooperativity. Combined, these results provide novel SAR insight for bitopic ligands that act as negative allosteric modulators of the D2R

    Prognostic model to predict postoperative acute kidney injury in patients undergoing major gastrointestinal surgery based on a national prospective observational cohort study.

    Get PDF
    Background: Acute illness, existing co-morbidities and surgical stress response can all contribute to postoperative acute kidney injury (AKI) in patients undergoing major gastrointestinal surgery. The aim of this study was prospectively to develop a pragmatic prognostic model to stratify patients according to risk of developing AKI after major gastrointestinal surgery. Methods: This prospective multicentre cohort study included consecutive adults undergoing elective or emergency gastrointestinal resection, liver resection or stoma reversal in 2-week blocks over a continuous 3-month period. The primary outcome was the rate of AKI within 7 days of surgery. Bootstrap stability was used to select clinically plausible risk factors into the model. Internal model validation was carried out by bootstrap validation. Results: A total of 4544 patients were included across 173 centres in the UK and Ireland. The overall rate of AKI was 14·2 per cent (646 of 4544) and the 30-day mortality rate was 1·8 per cent (84 of 4544). Stage 1 AKI was significantly associated with 30-day mortality (unadjusted odds ratio 7·61, 95 per cent c.i. 4·49 to 12·90; P < 0·001), with increasing odds of death with each AKI stage. Six variables were selected for inclusion in the prognostic model: age, sex, ASA grade, preoperative estimated glomerular filtration rate, planned open surgery and preoperative use of either an angiotensin-converting enzyme inhibitor or an angiotensin receptor blocker. Internal validation demonstrated good model discrimination (c-statistic 0·65). Discussion: Following major gastrointestinal surgery, AKI occurred in one in seven patients. This preoperative prognostic model identified patients at high risk of postoperative AKI. Validation in an independent data set is required to ensure generalizability

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∌99% of the euchromatic genome and is accurate to an error rate of ∌1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Subtle Modifications to the Indole-2-carboxamide Motif of the Negative Allosteric Modulator N-(( trans)-4-(2-(7-Cyano-3,4-dihydroisoquinolin-2(1 H)-yl)ethyl)cyclohexyl)-1 H-indole-2-carboxamide (SB269652) Yield Dramatic Changes in Pharmacological Activity at the Dopamine D2 Receptor

    No full text
    SB269652 (1) is a negative allosteric modulator of the dopamine D2 receptor. Herein, we present the design, synthesis, and pharmacological evaluation of "second generation" analogues of 1 whereby subtle modifications to the indole-2-carboxamide motif confer dramatic changes in functional affinity (5000-fold increase), cooperativity (100-fold increase), and a novel action to modulate dopamine efficacy. Thus, structural changes to this region of 1 allows the generation of a novel set of analogues with distinct pharmacological properties

    Subtle Modifications to the Indole-2-carboxamide Motif of the Negative Allosteric Modulator <i>N</i>‑((<i>trans</i>)‑4-(2-(7-Cyano-3,4-dihydroisoquinolin-2(1<i>H</i>)‑yl)ethyl)cyclohexyl)‑1<i>H</i>‑indole-2-carboxamide (SB269652) Yield Dramatic Changes in Pharmacological Activity at the Dopamine D<sub>2</sub> Receptor

    No full text
    SB269652 (<b>1</b>) is a negative allosteric modulator of the dopamine D<sub>2</sub> receptor. Herein, we present the design, synthesis, and pharmacological evaluation of “second generation” analogues of <b>1</b> whereby subtle modifications to the indole-2-carboxamide motif confer dramatic changes in functional affinity (5000-fold increase), cooperativity (100-fold increase), and a novel action to modulate dopamine efficacy. Thus, structural changes to this region of <b>1</b> allows the generation of a novel set of analogues with distinct pharmacological properties

    Structure–Activity Study of <i>N</i>‑((<i>trans</i>)‑4-(2-(7-Cyano-3,4-dihydroisoquinolin-2(1<i>H</i>)‑yl)­ethyl)­cyclohexyl)‑1<i>H</i>‑indole-2-carboxamide (SB269652), a Bitopic Ligand That Acts as a Negative Allosteric Modulator of the Dopamine D<sub>2</sub> Receptor

    No full text
    We recently demonstrated that SB269652 (<b>1</b>) engages one protomer of a dopamine D<sub>2</sub> receptor (D<sub>2</sub>R) dimer in a bitopic mode to allosterically inhibit the binding of dopamine at the other protomer. Herein, we investigate structural determinants for allostery, focusing on modifications to three moieties within <b>1</b>. We find that orthosteric “head” groups with small 7-substituents were important to maintain the limited negative cooperativity of analogues of <b>1</b>, and replacement of the tetrahydroisoquinoline head group with other D<sub>2</sub>R “privileged structures” generated orthosteric antagonists. Additionally, replacement of the cyclohexylene linker with polymethylene chains conferred linker length dependency in allosteric pharmacology. We validated the importance of the indolic NH as a hydrogen bond donor moiety for maintaining allostery. Replacement of the indole ring with azaindole conferred a 30-fold increase in affinity while maintaining negative cooperativity. Combined, these results provide novel SAR insight for bitopic ligands that act as negative allosteric modulators of the D<sub>2</sub>R
    corecore