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Abstract

Partial agonists of the dopamine D2 receptor (D2R) have been developed to treat the symptoms 

of schizophrenia without causing the side effects elicited by antagonists. The receptor-ligand 

interactions that determine the intrinsic efficacy of such drugs, however, are poorly understood. 

Aripiprazole has an extended structure comprising a phenylpiperazine primary pharmacophore 

and a 1,2,3,4-tetrahydroquinolin-2-one secondary pharmacophore. We combined site-directed 

mutagenesis, analytical pharmacology, ligand fragments and molecular dynamics simulations 

to identify the D2R-aripiprazole interactions that contribute to affinity and efficacy. We reveal 

that an interaction between the secondary pharmacophore of aripiprazole and a secondary 

binding pocket defined by residues at the extracellular portions of transmembrane segments 1, 

2 and 7 determine the intrinsic efficacy of aripiprazole. Our findings reveal a hitherto 

unappreciated mechanism through which to fine-tune the intrinsic efficacy of D2R agonists.
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Introduction

The dopamine D2 receptor (D2R), a class A G protein-coupled receptor (GPCR), is the target 

of drugs that relieve symptoms of Parkinson’s disease (agonists) and schizophrenia (partial 

agonists/antagonists)1. The antipsychotics aripiprazole, brexpiprazole and cariprazine are D2R 

partial agonists2-4. They are thought to act as functional antagonists in the striatum, where 

excessive dopamine activity is thought to cause positive symptoms, but to show agonist activity 

in the mesocortical pathway, where reduced dopamine activity is thought to be associated with 

negative symptoms and cognitive impairment. A partial agonist may also avoid the complete 

blockade of the nigrostriatal or tuberoinfundibular pathways, associated with extrapyramidal 

symptoms and elevated prolactin levels, respectively5. However, it remains unclear why these 

partial agonists display antipsychotic efficacy, while other D2R partial agonists have failed to 

do so. It has been proposed that the low level of intrinsic activity elicited by aripiprazole gives 

sufficient functional antagonism for antipsychotic efficacy whereas other partial agonists with 

higher intrinsic activity, such as bifeprunox, failed in clinical development6. Furthermore, the 

intrinsic activity of aripiprazole is apparently sufficient to avoid motor-side effects and 

prolactinaemia. 

The crystal structures of the D2R, D3R and D4R - in complex with the antagonists risiperidone, 

eticlopride and nemonapride, respectively - reveal the location of an orthosteric binding site 

(OBS) comprised of residues that are conserved in the dopamine D2-like receptors, and are 

consistent with earlier findings of mutagenesis and molecular modelling studies7-10. Despite 

the therapeutic utility of D2R full and partial agonists, our understanding of the ligand-receptor 

contacts that determine degrees of intrinsic efficacy is limited. Agonist-bound Class A GPCR 

crystal structures reveal different patterns of agonist-receptor interactions but common 

structural rearrangements in the extracellular part of the transmembrane (TM) bundle near the 

OBS upon receptor activation11,12. These are translated into larger rearrangements at the 

cytoplasmic side of the receptor, including translation and rotation of TM5 and TM6, and 

relocation of TM3 and TM7. In particular, comparisons of Class A GPCR crystal structures in 

active and inactive states, combined with molecular dynamics (MD) simulations, have 

highlighted the movement of a cluster of residues, Pro5.50, Ile3.40 and Phe6.44 (termed the “PIF 

motif”, Ballesteros and Weinstein numbering system13) along with Leu/Val5.51 and Trp6.48 on 

receptor activation. The reconfigurations of these residues couple the conformational changes 

in the binding pocket to those at the intracellular coupling interface14-16. 
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Aripiprazole is comprised of a 4-(2,3-dichlorophenyl)piperazine primary pharmacophore (PP) 

and a 1,2,3,4-tetrahydroquinolin-2-one secondary pharmacophore (SP) linked by a flexible 

butoxy linker. This extended structure is typical of ligands that are selective for dopamine D2-

like receptors7,17. Using the D3R crystal structure7, we revealed a secondary binding pocket 

(SBP) that extended away from the OBS towards the extracellular ends of TMs 1, 2, 3 and 7, 

and demonstrated that the interaction between this SBP and the aryl tail moiety of 

phenylpiperazine derivatives was not only an important determinant of subtype selectivity, but 

could also modulate ligand efficacy through reorientation of the phenylpiperazine core within 

the SBP18,19. Surprisingly, however, little is known about the binding mode of aripiprazole at 

the D2R and how this might determine its agonist efficacy. To address this, we combined MD 

simulations, mutagenesis, and analytical pharmacology to quantify agonist action in terms of 

both efficacy (τ) and functional affinity (KA). Together our studies reveal that the interaction 

between the 1,2,3,4-tetrahydroquinolin-2-one SP and the D2R SBP is a determinant of 

aripiprazole’s intrinsic efficacy. 
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RESULTS AND DISCUSSION

Aripiprazole and dopamine show distinct sensitivities to OBS mutations

To interrogate the ligand-receptor interactions involved in agonist binding and the subsequent 

activation of the D2R, we mutated residues within the OBS, the SBP and the transmission 

switch of the D2R. ELISA revealed no significant difference between the cell surface 

expression levels of the mutant and wild-type (WT) receptors (Supplementary Figure 1). We 

then determined the effect of each mutation on the dissociation constant (pKd) of [3H]spiperone 

and/or [3H]raclopride. A homologous competition binding assay revealed that none of the 

mutations had a significant effect on the pKd of [3H]spiperone (Supplementary Table 2) with 

the exception of V912.61A, F3606.51A, and F3616.52A for which no detectable binding was 

observed. Of these three mutants, [3H]raclopride bound V912.61A with WT affinity but was 

unable to bind F3606.51A and F3616.52A (Supplementary Table 2). 

The binding affinities (Ki) of the agonists at the D2R were determined in competition binding 

experiments (Table 1). To measure the functional impact of the mutations, we used inhibition 

of forskolin-induced cAMP production as a measure of D2R Gαi/o G protein signalling. Many 

OBS mutations, however, abrogated the binding and/or functional activity of dopamine, which 

prevented us from quantifying the relative effect of these mutations on aripiprazole. We, 

therefore, extended our studies to ropinirole, an agonist that retained activity at many OBS 

mutations. We designed a sensitive cAMP assay using a low (300 nM) concentration of 

forskolin to give a greater dynamic range with which to quantify the deleterious effects of 

receptor mutants. In this assay aripiprazole displayed a robust partial maximal response (80%) 

relative to that of dopamine. This contrasts to previous studies of aripiprazole using the same 

CHO cell background for which a much lower relative maximal response was observed2,20. 

Such differences reflect different receptor expression levels and assay sensitivity. Our data 

were fitted with an operational model of agonism to derive a transduction coefficient (τ/KA) of 

all three agonists, comprised of agonist efficacy () and the functional affinity of the receptor 

when coupled to a specific signalling pathway (KA)21. Although we could not define these two 

separate parameters for the full agonists dopamine and ropinirole, in the case of the partial 

agonist aripiprazole, we could determine separate values of affinity and efficacy (KA = 17 nM, 

 = 5, Table 1). 
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We first investigated the role of OBS residues (Table 1). Asp1143.32 forms a salt bridge 

interaction with the positively charged nitrogen of dopaminergic ligands and the mutation 

D1143.32A ablates agonist and antagonist binding22. Val3.33, Cys3.36 and Thr3.37 line the OBS in 

the D2R, D3R and D4R structures7,9,10. V1153.33A reduced the binding affinity of dopamine and 

aripiprazole but not ropinirole and decreased the transduction coefficients (/KA) of all ligands 

(Table 1). In the case of aripiprazole this effect was caused by a significant 8-fold decrease in 

efficacy (). C1183.36A or T1193.37A had little effect on binding affinity (Ki), but significantly 

reduced the functional effect of all ligands, causing a greater than 50-fold decrease in 

transduction coefficients (/KA) or abrogating activity altogether (Table 1). 

The conserved TM5 serine residues have been shown to be important for agonist binding and 

action at all DR subtypes23-27. In agreement with these previous studies, the binding affinity of 

dopamine was significantly reduced at S1935.42A, S1945.43A and S1975.46A by 120-, 4-, and 3-

fold, respectively (Figure 1, Table 1). The transduction coefficient of dopamine was reduced 

at S1935.42A (1600-fold) and S1945.43A (11-fold), whereas S1975.46A abolished its functional 

effect entirely (Figure 1, Table 1). The binding affinity and transduction coefficient of 

ropinirole were also significantly reduced at S1935.42A by 15-fold and 930-fold, respectively. 

S1945.43A had no effect on ropinirole affinity but caused a 20-fold decrease in transduction 

coefficient, whereas S1975.46A had no effect. Interestingly, mutation of the TM5 serines did 

not decrease the efficacy () of aripiprazole (Figure 1). Rather, S1935.42A caused a 3-fold 

increase in binding affinity and a 10-fold increase in efficacy, whereas S1975.46A caused a 5–

fold decrease in binding affinity with no effect upon the functional response (Figure 1, Table 

1). 

Figure 1
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Figure 1: Mutation of residues within the OBS and SBP have distinct effects upon the 

affinity and efficacy of aripiprazole as compared to dopamine and ropinirole. WT and 

mutant D2Rs were stably expressed in FlpIN CHO cells. The change in affinity (pKi) of 

ropinirole (A), dopamine (B) and aripiprazole (C) at each mutant was determined in 
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competition binding experiments. The ability of increasing concentrations of each agonist to 

activate the WT or mutant D2Rs was determined in an assay measuring the inhibition of cAMP 

production. These data were fit to an operational model of agonism and changes in transduction 

coefficient (/KA) were determined for ropinirole (D), dopamine (E) and aripiprazole (F) at 

each mutant.  Changes in functional affinity (pKA, G) and efficacy (, H) were also determined 

for aripiprazole. Mutations that cause significant increases (one-way ANOVA with Dunnett's 

post hoc test, P < 0.05, blue) or decreases (red) for each parameter at the mutant receptor as 

compared to WT are highlighted on a homology model of the D2R. 

Residues within ECL2 form part of the D2R and D3R OBS7,28. I184ECL2A significantly reduced 

the binding affinity and transduction coefficient of dopamine (4-fold and 28-fold, respectively) 

(Table 1). None of the ECL2 mutations affected the binding affinity, functional affinity or 

efficacy of aripiprazole (Table 1). 

Residues 6.51 and 6.52 interact with the substituted aromatic ring of eticlopride in the D3R and 

the methoxy benzamide ring of nemonapride in the D4R7,9. None of the agonists displayed 

functional activity at F3606.51A, and F3616.52A caused a significant decrease in the transduction 

coefficients of both ropinirole (9-fold) and dopamine (7-fold) (Figure1, Table 1). Residue 6.55 

has been shown to be important for agonist binding and efficacy at the D2R and D3R7,27,29,30. 

H3646.55A decreased the binding affinity (4-fold) and transduction coefficient (69-fold) of 

dopamine and the transduction coefficient (6-fold) of ropinirole but not its affinity. The 

H3646.55F mutation reduced the transduction coefficient of ropinirole (110-fold) and dopamine 

(28-fold) indicating that the imidazole side chain of His3646.55 is important for the agonist 

action of these ligands (Table 1). Residues 6.58 and 6.59 line the OBS30. In the 5HT2B receptor 

these residues form hydrophobic contacts with ergotamine that are important for its biased 

action31. N3676.58A caused a 3-fold decrease in the binding affinity and a 10-fold decrease in 

the transduction coefficient of dopamine only (Table 1). I3686.59A decreased the transduction 

coefficient of ropinirole by 5-fold. Notably, mutation of these TM6 residues (F3616.52A, 

H3646.55A/F, N3676.58A, or I3686.59A) did not change the affinity or efficacy of aripiprazole 

(Figure 1, Table 1). Mutation of Thr3837.39, a residue shown to contribute to aminergic receptor 

ligand binding8, did not change the binding affinity of the three agonists but decreased the 

transduction coefficient of ropinirole (29-fold) while it increased that of aripiprazole 5-fold. 
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In summary, we identified OBS residues that contribute to the efficacy of all three agonists but 

found mutations in ECL2 (I184ECL2A), TM5 (S1935.42A, S1945.43A and S1975.46A) and TM6 

(F3616.52A, H3646.55A, N3676.58A, or I3686.59A) that had deleterious effects on the functional 

effect of dopamine and ropinirole but no effect on the efficacy of aripiprazole. Differential 

engagements of the TM5 serines (at positions 5.42, 5.43 and 5.46) and His6.55 by D2R agonists 

have been suggested to underlie differences in efficacy through the stabilisation of distinct 

receptor conformations27,29. In the case of aripiprazole, rather than deleterious effects, the 

mutations S5.46A, F6.52A and H6.55A caused a modest increase in efficacy. Interestingly, S5.42A 

and S5.46A caused decreases in the affinity and transduction coefficient of dopamine in 

agreement with previous studies, whereas S5.46A had no effect on ropinirole. In a previous study 

our MD simulations found that the N-1 of sumanirole, an agonist that is structurally similar to 

ropinirole, forms a hydrogen bond with the side chain of Ser5.42 but no interaction with Ser5.46 

is observed32. Ropinirole might adopt a similar orientation but further simulations are required 

to confirm this hypothesis.

Transmission switch residues are required for agonist action at the D2R

Comparison of the active and inactive structures of rhodopsin and the adenosine A2A, 2 

adrenergic and  opioid receptors revealed rearrangement of a cluster of hydrophobic and 

aromatic residues (including 3.40, 5.50, 5.51, 6.44, and 6.48) in TM3–TM5–TM6 as a common 

feature of Class A GPCR activation11,12,15. I1223.40 is part of the conserved P5.50-I3.40-F6.44 motif 

that undergoes structural rearrangement on receptor activation to allow the outward movement 

of TM6. I1223.40A had no significant effect on the binding affinity of the agonists but abrogated 

functional activity. F2025.51A caused a significant reduction in the binding affinity of dopamine 

and aripiprazole (6-fold and 3-fold respectively, Table 1). Aripiprazole displayed no agonism 

at this mutant and ropinirole and dopamine displayed more than 100-fold lower transduction 

coefficients (Table 1). Thus, all three D2R agonists require conformational rearrangement of 

transmission switch residues to exert their agonistic effect. While F2025.51 does not form part 

of the OBS, the F2025.51A may modulate the conformation of the OBS causing the loss of 

affinity of dopamine and aripiprazole but not ropinirole. Interestingly, the recent D2R crystal 

structure obtained in complex with the antagonist risperidone included I1223.40A as one of three 

thermostabilizing mutations10. This mutation likely exerts its thermostabilizing effect by 

preventing the isomerisation of the receptor into the active state.
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Molecular dynamic simulations reveal an extended pose of aripiprazole 

To characterize and dissect the contributions of residues from the OBS and SBP to the binding 

pose of aripiprazole, we performed a computational modelling and simulation study of D2R 

models in complex with aripiprazole. From the initial docking results, we chose several 

aripiprazole poses with its quinoline moiety oriented in various directions in the extracellular 

vestibule (EV) of D2R (see Methods). We then collected multiple MD trajectories for each pose 

(Supplementary Table 1) and sought to identify a convergent trend of the ligand dynamics in 

the binding site. 
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Tables

Table 1. The effect of mutations in the OBS and ECL2 of the D2R on the affinity and functional activity of selected agonists. 
Ropinirole Dopamine Aripiprazole

Construct pKi 

(fold )

Log(/KA) 

(fold )

pKi  

(fold )

Log(/KA) 

(fold )

pKi 

(fold )

Log(/KA) 

(fold )

pKA 

(fold )

Log

(fold )

WT 5.18 ± 0.04 

(1.0)

8.29 ± 0.06 

(1.0)

4.94 ± 0.03 

(1.0)

8.51 ± 0.05 

(1.0)

9.92 ± 0.02 

(1.0)

8.45 ± 0.06 

(1.0)

7.75 ± 0.14 0.69 ± 0.15

V1153.33A 4.73 ± 0.20 

(2.8)

6.78 ± 0.15* 

(33)

4.06 ± 0.15* 

(7.7)

7.32 ± 0.12* 

(16)

9.07 ± 0.04* 

(7.1)

7.70 ± 0.17*

(5.6)

7.83 ± 0.20

(0.8)

-0.19 ± 0.04*

(8)

C1183.36A 5.43 ± 0.09 

(0.6)

ND 4.40 ± 0.16* 

(3.5)

5.94 ± 0.09* 

(370)

9.36 ± 0.03* 

(3.6)

ND ND ND

T1193.37A 5.37 ± 0.16 

(0.7)

6.47 ± 0.08* 

(67)

4.84 ± 0.04 

(1.3)

ND 9.68 ± 0.10 

(1.7)

ND ND ND

I1223.40A 5.11 ± 0.04 

(1.2)

ND 5.21 ± 0.10 

(0.5)

ND 10.11 ± 0.09 

(0.6)

ND ND ND

L174ECL2A 5.65 ± 0.13 

(0.3)

8.21 ± 0.09 

(1.2)

5.24 ± 0.12 

(0.5)

8.22 ± 0.06 

(1.9)

10.16 ± 0.07 

(0.6)

8.43 ± 0.19 

(1.0)

7.95 ± 0.14

(0.6)

0.48 ± 0.11

(1.6)

E181ECL2A 5.52 ± 0.03 

(0.5)

7.94 ± 0.19 

(2.2)

5.02 ± 0.01 

(0.8)

8.63 ± 0.17 

(0.8)

9.88 ± 0.05 

(1.1)

8.20 ± 0.22 

(1.8)

8.00 ± 0.16

(0.6)

0.19 ± 0.08

(3)

I183ECL2A 5.50 ± 0.02 

(0.5)

8.51 ± 0.18 

(0.6) 

5.02 ± 0.03 

(0.8)

8.75 ± 0.10 

(0.6)

9.50 ± 0.08 

(2.7)

8.05 ± 0.24 

(2.5)

7.61 ± 0.23

(1.4)

0.44 ± 0.01

(1.8)

I184ECL2A 5.18 ± 0.06 

(1.0)

7.36 ± 0.16* 

(8.5)

4.40 ± 0.07* 

(3.5)

7.06 ± 0.05* 

(28)

9.45 ± 0.12 

(3.0)

7.93 ± 0.05 

(3.3)

7.65 ± 0.07

(1.3)

0.27 ± 0.09

(2.6)

A185ECL2S 5.69 ± 0.03* 

(0.3)

8.39 ± 0.08 

(0.8)

5.37 ± 0.11* 

(0.4)

8.61 ± 0.09 

(0.8)

10.06 ± 0.13 

(0.7)

8.65 ± 0.06 

(0.6)

7.87 ± 0.15

(0.8)

0.79 ± 0.11

(0.8)
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N186ECL2A 5.01 ± 0.10 

(1.5)

7.67 ±0.07 

(4.2)

4.54 ± 0.09 

(2.5)

8.01 ± 0.06 

(3.2)

9.60 ± 0.21 

(2.1)

8.10 ± 0.20 

(2.2)

7.63 ± 0.12

(1.6)

0.47 ± 0.11

(1.6)

S1935.42A 4.00 ± 0.05* 

(15)

5.32 ± 0.12* 

(930)

2.86 ± 0.09* 

(120)

5.30 ± 0.14* 

(1600)

10.41 ± 0.06* 

(0.3)

8.82 ± 0.11 

(0.4)

7.29± 0.16

(2.9)

1.53 ± 0.15*

(0.1)

S1945.43A 5.01 ± 0.11 

(1.5)

6.99 ± 0.09* 

(20)

4.39 ± 0.08* 

(3.6)

7.48 ± 0.12* 

(11)

9.66 ± 0.17 

(1.8)

8.42 ± 0.09 

(1.1)

7.72 ± 0.07

(1.1)

0.71 ± 0.30

(1)

S1975.46A 5.07 ± 0.04 

(1.3)

8.08 ± 0.14 

(1.6)

4.47 ± 0.03* 

(3.0)

ND 9.21 ± 0.07* 

(5.1)

8.58 ± 0.06 

(0.7)

7.82 ± 0.10

(0.9)

0.80 ± 0.10

(0.8)

F2025.51A 4.91 ± 0.07 

(1.9)

6.21 ± 0.21* 

(120)

4.15 ± 0.04* 

(6.2)

6.30 ± 0.10* 

(160)

9.40 ± 0.10* 

(3.3)

ND ND ND

F3606.51A ND ND ND ND ND ND ND ND

F3616.52A ND 7.36 ± 0.15* 

(8.6)

ND 7.65 ± 0.18* 

(7.2)

ND 8.03 ± 0.23 

(2.6)

7.29 ± 0.18

(2.8)

0.73 ± 0.13

(0.9)

H3646.55A 5.39 ± 0.05 

(0.6)

7.52 ± 0.25* 

(5.9)

4.33 ± 0.08* 

(4.1)

6.67 ± 0.21* 

(69)

10.22 ± 0.03 

(0.5)

8.58 ± 0.16 

(0.7)

7.64 ± 0.24

(1.3)

0.89 ± 0.07

(0.6)

H3646.55F 5.11 ± 0.09 

(1.2)

6.26 ± 0.11* 

(110)

4.63 ± 0.05 

(2.1)

7.06 ± 0.07* 

(28)

9.74 ± 0.05 

(1.5)

8.43 ± 0.12 

(1.0)

7.50 ± 0.14

(1.8)

0.93 ± 0.19

(0.6)

N3676.58A 5.28 ± 0.07 

(0.8)

7.71 ± 0.08 

(3.8)

4.45 ± 0.06* 

(3.1)

7.51 ± 0.03* 

(10)

9.91 ± 0.04 

(1.0)

8.29 ± 0.13 

(1.4)

7.93 ± 0.10 

(0.7)

0.20 ± 0.04

(3.0)

I3686.59A 5.41 ± 0.09 

(0.6)

7.58 ± 0.16* 

(5.2)

5.45 ± 0.11* 

(0.3)

8.59 ± 0.19 

(0.8)

9.62 ± 0.07 

(2.0)

8.49 ± 0.10 

(0.9)

7.89 ± 0.14

(0.7)

0.60 ± 0.12

(1.2)

S3807.36A 5.57 ± 0.01 

(0.4)

8.00 ± 0.13 

(2.0)

5.06 ± 0.10 

(0.8)

8.68 ± 0.16 

(0.7)

9.92 ± 0.10 

(1.0)

8.23 ± 0.26 

(1.7)

8.41 ± 0.18

(0.22)

0.87 ± 0.19

(0.66)

T3837.39A 5.36 ± 0.04 

(0.7)

6.83 ± 0.06* 

(29)

4.87 ± 0.04 

(1.2)

7.91 ± 0.10 (4) 10.13 ± 0.14 

(0.6)

9.09 ± 0.07 

(0.2)*

7.99 ± 0.10

(0.6)

1.09 ± 0.13

(0.40)

Page 12 of 36

ACS Paragon Plus Environment

ACS Chemical Biology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



13

Binding affinity values were obtained in competition binding experiments using the radioligand [3H]spiperone. Values of functional affinity, 

efficacy and transduction ratios were determined in an assay measuring inhibition of forskolin-induced intracellular cAMP production. Values are 

expressed as mean ± S.D. from three (binding) or four (cAMP) separate experiments. ND = no specific binding or agonist activity could be 

determined. *P < 0.05, significantly different from the wild-type receptor determined by a one-way ANOVA, Dunnett post-hoc test.
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Figure 2: Molecular modeling and ligand docking experiments reveal that aripiprazole 

adopts an extended orthosteric pose at the D2R. A) Molecular modeling and docking 

experiments using a homology model of the D2R followed by MD simulations reveal that 

aripiprazole adopts an extended orthosteric pose within the D2R and interacts with residues 

within the OBS and SBP. B) Within the OBS, the 2,3-diCl-phenylpiperazine PP of aripiprazole 

adopts a pose parallel to the membrane oriented towards TM5. Within the SBP, the 1,2,3,4-

tetrahydroquinolin-2-one “tail” moiety and the flexible butoxy linker adopt two distinct poses 

dependent upon the orientation of Trp3847.40.  C) When this residue faces lipids the quinalinone 

ring occupies a cavity within the SBP contacting residues from TM1, 2 & 7.  D) When 

Trp3847.40 rotates inward the quinalinone ring can no longer occupy the SBP but instead tilts 

towards TM3 and ECL2. E & F) The L411.39A mutation increases the propensity for Trp3847.40 

to rotate inwards, allowing Trp3847.40, Tyr371.35 and Glu952.65 to interact.

Similar to the partial agonists with a 2,3-diCl-phenylpiperazine PP that we have characterized 

previously in D3R models18, the PP of aripiprazole adopts a pose that is relatively parallel to 

the membrane, and in close vicinity to Ser1935.42 but does not form an H-bond with Ser1935.42. 

In all our simulations, Ser1975.46 forms a H-bond to the backbone carbonyl of Ser1935.42. Thus, 
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the S1935.42A mutation may lead to an optimized hydrophobic-interaction, and slightly improve 

the affinity, whereas Ser1975.46A mutation disrupts the local conformation of TM5 and results 

in slightly decreased affinity. In such a pose, both rings of 2,3-diCl-phenylpiperazine are tightly 

packed with Phe3606.51, and it is expected that the F3606.51A mutation would destabilize the 

observed orientation of the phenylpiperazine. Thus, this pose of the PP within the D2R OBS is 

in agreement with our mutagenesis results.

For the SP and the flexible butoxy linker, however, we found that our simulations from 

different starting poses and multiple trajectories converged to two distinct poses in the EV, 

depending on the orientation of the highly conserved Trp3847.40. When Trp3847.40 faces lipid 

as in the D3R structure, the quinoline ring occupies a cavity at the interface between TM1, TM2 

and TM7, and is in contact with Leu411.39, Val912.61, and Trp3847.40 (Figure 2C). In contrast, 

when the indole ring of Trp3847.40 rotates inward between the sidechains of Val912.61 and 

Leu411.39, the quinoline ring can no longer extend into this cavity but rather tilts toward ECL2 

and TM3, forming a weak interaction with Glu952.65 (Figure 2D). Such an inward orientation 

of Trp3847.40 is observed in most of the crystal structures of aminergic receptors33. While the 

Trp3847.40 of the D3R faces lipid, that of the D2R-structure is in an intermediate position and in 

our simulations, we observed that this residue can adopt both the inward and outward 

orientation7,10.

The SP of aripiprazole confers an increase in efficacy 

To explore how the interaction of the SP of aripiprazole with the D2R SBP might influence 

affinity and efficacy, we characterized a series of progressively extended fragments of 

aripiprazole incorporating either the PP or the SP. The introduction of the alkyl or alkoxy 

spacers (compounds 2-4) to the PP 2,3-dichloropheylpiperazine fragment (DCPP, 1) conferred 

32 to 115-fold increases in binding affinity (Figure 3, Table 2). Incorporation of the 1,2,3,4-

tetrahydroquinolin-2-one (THQ) moiety of aripiprazole enhanced the binding affinity by a 

further 22-fold compared to the methoxybutyl substituted derivative (4). Fragments containing 

the SP were only able to displace the radioligand upon inclusion of an ionisable nitrogen atom 

within its structure (Supplementary Table 3). In functional studies, this time using a BRET 

biosensor to measure cAMP levels, the incorporation of alkyl or alkoxy spacers conferred up 

to 17-fold increase in functional affinity as compared to DCPP, although a further increase in 

functional affinity was not observed with the incorporation of the THQ moiety. The DCPP 

fragment of aripiprazole displayed weak intrinsic efficacy, in agreement with previously 
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published data18, an effect conferred through interaction of the PP with the OBS as shown by 

our MD simulations.  The incorporation of a propyl linker (2) caused a 2-fold decrease in 

efficacy, whereas the butyl linker (3) and butoxy linker (4) derivatives displayed a similar level 

of efficacy as DCPP (Figure 3, Table 2). Strikingly, the incorporation of the THQ moiety (to 

generate aripiprazole) caused a 10-fold increase in efficacy.

In our previous study we observed that the DCPP core of R22 could be replaced with a 2-

methoxyphenylpiperazine (2MeOPP) core with little change in efficacy or affinity at the D2R18. 

We hypothesized that addition of the 7-butoxy-1,2,3,4-tetrahydroquinolin-2-one substituent of 

aripiprazole to the 2MeOPP core (11) would cause an increase in both affinity and efficacy (). 

The addition of an N-butyl substitution conferred a 32-fold increase in affinity, whereas the 

addition of the 7-butoxy-1,2,3,4-tetrahydroquinolin-2-one substitution (13) conferred a 2600-

fold higher affinity than the 2MeOPP core to yield an extended ligand with the same affinity 

as aripiprazole (Figure 2, Table 2). Importantly, we observed that the addition of the 7-butoxy-

1,2,3,4-tetrahydroquinolin-2-one substituent caused a 26-fold and 10-fold increase in efficacy 

() as compared to the 2MeOPP (11) and the N-butyl substituent (12) respectively (Figure 3, 

Table 2). Thus, the linking of the 7-butoxy-1,2,3,4-tetrahydroquinolin-2-one SP to the 

2MeOPP PP to generate a novel partial agonist results in both increases in efficacy and affinity.
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Table 2. Binding affinities and functional action of phenylpiperazine fragments and extended compounds at the D2R. 
pKi ± SEM

[3H]spiperone

pKi ± SEM 

[3H]raclopride

cAMP

(BRET Biosensor)

Compound WT L411.39A (fold) E952.65A 

(fold)

WT V912.61A 

(fold)

pKA Log

1
6.24 ± 0.04# 6.80 ± 0.16 

(0.3)

6.29 ± 0.16

(0.9)
7.45 ± 0.31

7.59 ± 0.17

(0.7)

6.49 ± 0.18 0.12 ± 0.06#

2
7.74 ± 0.07#

- - - -
7.50 ± 0.28 -0.30 ± 0.07#

3
8.30 ± 0.10#

- - - -
7.20 ± 0.24 -0.04 ± 0.06#

4
7.70 ± 0.09#

- - - -
7.72 ± 0.19 0.00 ± 0.05#

Aripiprazole

9.11 ± 0.12
- - - -

7.41 ± 0.30 1.02 ± 0.24

11 5.64 ± 0.07* 6.23 ± 0.15*

(0.4)

6.12 ± 0.13*

(0.3)
6.49 ± 0.19

6.43 ± 0.24

(1.1)

6.51± 0.42* -0.42 ± 0.11*
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N
NHO

12
7.03 ± 0.05*

- - - -
7.31± 0.20* -0.03 ± 0.05*

13 

N
NO

O N
H

O

9.11 ± 0.08 10.4 ± 0.09*

(0.1)

9.34 ± 0.16

(0.6)
10.3 ± 0.22

8.41 ± 0.26*

(77)

8.56 ± 0.26 1.00 ± 0.22

Binding affinity (Ki) determined by competition binding experiments using radiolabelled antagonist [3H]spiperone or [3H]raclopride at WT or 

mutant SNAP-D2SR. Functional affinity (KA) and efficacy () determined in an assay measuring inhibition of forskolin-stimulated cAMP 

production. Values are expressed as mean ± S.D. from three separate experiments.  *Values significantly different compared to WT as determined 

by one-way ANOVA (Dunnett’s post hoc test, p < 0.05). #Values significantly different from aripiprazole as determined by one-way ANOVA 

(Dunnett’s post-hoc test) (p < 0.05).
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Figure 3: The 7-butoxy-1,2,3,4-tetrahydroquinolin-2-one substitution of a 

phenylpiperazine core confers an increase in efficacy and affinity.

Two series of substituted phenylpiperazine fragments and extended compounds were 

synthesized, one that incorporates the 2,3-dichloropheylpiperazine (A, DCPP) core that 

includes aripiprazole, and one that incorporates the 2-methoxyphenylpiperazine core (2MeOPP, 

B). The ability of increasing concentrations of each compound in the DCPP series (C, E) or 

the 2MeOPP series (D, F) to activate the WT D2SRs was determined through an assay 

measuring the inhibition of forskolin-stimulated cAMP production using a BRET biosensor.  
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These data were fit to an operational model of agonism (E, F) and changes in functional affinity 

or efficacy were determined as compared to the phenylpiperazine core of each series. 

*significant change in parameter as compared to that of the core of each series (one-way 

ANOVA with Dunnett's post hoc test, P < 0.05).

Interaction with SBP residues determines the efficacy of aripiprazole

Our results show that the interaction of the SP with the SBP contributes to the affinity and, 

more surprisingly, the efficacy of aripiprazole. We used mutagenesis to explore the SBP 

residues that contribute to this interaction. In agreement with the interaction of the SP with 

SBP residues, the binding affinity of aripiprazole was significantly reduced by SBP mutations 

W902.60A (5-fold), V912.61A (8-fold) and E952.65A (3-fold, Table 3). V912.61A caused a 11-fold 

reduction in the transduction coefficient of aripiprazole, whereas E952.65A resulted in a 11-fold 

reduction of its functional affinity (KA, Figure 1, Table 3). While V912.61A and E952.65A had 

no effect on the two smaller agonists, W902.60A reduced the transduction coefficients of 

ropinirole (14-fold) and dopamine (6-fold), and the binding affinity of dopamine (6-fold). The 

mutations E952.65A, V912.61A and L411.39A did not change the affinity of the DCPP fragment 

(Table 2). F1103.28A significantly reduced the binding affinity of all three agonists, and the 

transduction coefficients of dopamine and ropinirole but not aripiprazole (Table 3). The 

mutation L411.39A increased the binding affinity of ropinirole and aripiprazole (5-fold) but had 

no significant effect on the binding affinity of dopamine (Figure 1, Table 3). Strikingly, this 

mutation caused a 5-fold decrease in the efficacy () of aripiprazole whereas the transduction 

coefficients of the smaller agonists were not significantly changed (Table 3). Val912.61 and 

Phe1103.28 are in close contact with the butoxy linker of aripiprazole in both of the SP poses 

obtained with our MD simulations (Figure 2) and these interactions can be correlated to the 

negative impact of V912.61A or F1103.28A on aripiprazole affinity. We extended our MD 

simulations to compare the pose of aripiprazole at the WT and L411.39A mutant. The L411.39A 

mutation is associated with a higher propensity for inward rotation of Trp3847.40 (Figure 2E & 

F, Supplementary Figure 1), which affects the orientation of Glu952.65 and Tyr371.35. 

Interestingly, Trp3847.40, Tyr371.35, and Glu952.65 form an interaction network only in the 

mutant simulations (Figure 2F, Supplementary Figure 1). Thus, our simulations indicate that 

the orientation of the SP towards ECL2 and TM3 is favoured in the L411.39A mutant.

Page 20 of 36

ACS Paragon Plus Environment

ACS Chemical Biology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



21

In order to make comparisons with the functional data obtained with the various fragments of 

aripiprazole (Table 2) we used a BRET biosensor to measure the inhibition of cAMP. In this 

assay, dopamine and aripiprazole displayed significant 4-fold and 5-fold decreases in 

transduction coefficients at the L411.39A mutant, respectively (Figure 4, Supplementary Table 

4). The latter effect was caused by a 5-fold decrease in aripiprazole efficacy (, Figure 4J), 

similar to changes observed in the Alphascreen cAMP assay. Of note, the efficacy of 

aripiprazole at this mutant was equivalent to that of the DCPP fragment at the WT receptor 

suggesting that the efficacy gain conferred by the SP of aripiprazole requires Leu411.39. To 

determine whether the decreased transduction coefficient of dopamine at L411.39A was caused 

by a decrease in functional affinity or efficacy, we treated cells with increasing concentrations 

of phenoxybenzamine to alkylate cell surface D2Rs prior to stimulation with agonist. We 

applied the operational model of agonism to these data to determine the functional affinity and 

efficacy of dopamine and ropinirole (Figure 4, Supplementary Table 4). The mutation L411.39A 

caused a 10-fold decrease in dopamine functional affinity (KA) but no change in efficacy () 

(Figure 4H & K, Supplementary Table 4). The functional affinity and efficacy of ropinirole 

was unaffected by this mutation (Figure 4I & L, Supplementary Table 4). 
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Table 3. The effect of mutations in the SBP of the D2R on the binding affinities and functional activity of selected agonists. 

Binding affinity values were obtained in competition binding experiments using the radioligand [3H]spiperone unless otherwise stated. Values of 

functional affinity, efficacy and transduction ratios were determined in an assay measuring inhibition of forskolin-induced intracellular cAMP 

production. #Binding affinity values are obtained in competition binding experiments using the radioligand [3H]raclopride. Values are expressed 

as mean ± S.D. from three (binding) or four (cAMP) separate experiments. ND = no specific binding or agonist activity could be determined. 

*P<0.05, significantly different from the wild-type receptor determined by a one-way ANOVA, Dunnett post-hoc test.

Ropinirole Dopamine Aripiprazole

Construct pKi 

(fold )

Log(/KA)

 (fold )

pKi

 (fold )

Log(/KA)

(fold )

pKi 

(fold )

Log(/KA)

(fold )

pKA 

(fold )

Log

(fold )

WT 5.18 ± 0.04 4.94 ± 0.03 9.92 ± 0.02

WT# 5.83 ± 0.12 8.29 ± 0.06 5.78 ± 0.13 8.51 ± 0.05 9.86 ± 0.11 8.45 ± 0.06 7.75 ± 0.14 0.69 ± 0.15

L411.39A 5.85 ± 0.10* 

(0.2)

8.09 ± 0.16 

(1.6)

5.29 ± 0.02 (0.5) 7.89 ± 0.27 (4.2) 10.61 ± 0.04* 

(0.2)

8.12 ± 0.16 

(2.1) 

8.07 ± 0.16

(0.5) 

0.03 ± 0.07* 

(4.6)

W902.60A 4.90 ± 0.14 (1.9) 7.14 ± 0.18* (14) 4.17 ± 0.05* 

(5.9)

7.71 ± 0.20* 

(6.4)

9.18 ± 0.08* 

(5.5)

8.13 ± 0.16 

(2.1)

7.74 ± 0.10 

(1.0)

0.37 ± 0.08 (2.0)

V912.61A# 6.03 ± 0.02 (0.6) 8.32 ± 0.12 (1.0) 6.03 ± 0.08 (0.6) 8.69 ± 0.20 (0.7) 8.96 ± 0.04* 

(8.1)

7.41 ± 0.26* 

(11)

7.29 ± 0.36

(2.8)

0.12 ± 0.22

(3.7)

E952.65A 5.68 ± 0.08* 

(0.3)

8.16 ± 0.11 (1.4) 5.24 ± 0.06 (0.5) 8.22 ± 0.11 (2.0) 9.41 ± 0.06* 

(3.2)

7.87 ± 0.15 

(3.8)

6.71± 0.21*

(11)

1.16 ± 0.24

(0.3)

F1103.28A 4.37 ± 0.15* 

(6.5)

7.19 ± 0.13* (13) 3.57 ± 0.08* (24) 7.58 ± 0.19* 

(8.6)

8.68 ± 0.06* (17) 8.08 ± 0.11 

(2.3)

7.30 ± 0.16

(2.8)

0.78 ± 0.10

(0.8)
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Figure 4: Mutation of SBP residues decrease the efficacy of aripiprazole but not 

dopamine 

The ability of increasing concentrations of aripiprazole (A), dopamine (B) or ropinirole (C) to 

activate the WT or mutant (L411.39A, W3847.40A, L41F, V91F and L411.39A/V912.61A) SNAP-

tagged D2SRs SNAP-tagged D2SRs was determined in a BRET assay measuring the inhibition 

of forskolin-stimulated cAMP production. These data were fit to an operational model of 

agonism and estimates in transduction coefficient (D-F), and the functional affinity (G-I) and 

efficacy (J-L) at the WT and mutant receptors. *significant changes in parameter for each 

agonist relative to WT (one-way ANOVA with Dunnet’s post-hoc test, P < 0.05).

As described above, Leu411.39 directly affects the rotation of Trp3847.40 (Figure 2). To explore 

the interaction between Trp3847.40 and Leu411.39, either Trp3847.40 or both residues were 

mutated to alanine. The action of all agonists was compromised at the double mutant because 
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of its low cell surface expression (Supplementary Figure 3). W3847.40A caused significant 

decreases in dopamine (5-fold) and ropinirole (3-fold) transduction coefficients but had no 

effect on aripiprazole (Figure 4, Supplementary Table 4). This is consistent with our proposal 

that the aripiprazole pose shown in Figure 2C may be more relevant to its intrinsic efficacy, as 

the mutation of W3847.40A is unlikely to have a negative impact on this pose when Trp384 

faces lipids. In addition, the preference of the aripiprazole pose in the L411.39A mutant, which 

is coordinated with the inward rotation of Trp384 (Figure 2F), supports the idea that the impact 

of this remote TM1 mutation may be partially mediated by Trp3847.40. 

We explored the effect of adding bulk and aromaticity to the SBP by mutating both V912.61 and 

L411.39 to phenylalanine. L411.39F had no effect. V912.61F caused 35-fold, 30-fold and 170-fold 

decreases in the transduction coefficients of dopamine, ropinirole and aripiprazole respectively 

(Figure 4F, Supplementary Table 4). This mutation caused both a decrease in the functional 

affinity (14-fold) and efficacy (11-fold) of aripiprazole. Leu411.39 and Val912.61 directly interact 

(Figure 2C). The double (L411.39A/V912.61A) mutant caused a 10-fold decrease in the 

transduction coefficient of dopamine and ropinirole but a much greater 49-fold decrease for 

aripiprazole, driven by a 42-fold decrease in efficacy (, Figure 4I, Supplementary Table 4). In 

contrast this double mutation decreased the functional affinity (KA, Figure 4H, Supplementary 

Table 4) of dopamine by 5-fold and had no significant effect on dopamine efficacy. 

Together these data indicate that the direct interaction of the SP of aripiprazole with the D2R 

SBP contributes to its intrinsic efficacy. The addition of the SP to the phenylpiperazine PP 

conferred a significant increase in efficacy, and mutations within the SBP modulated the 

activity of aripiprazole. The mutation of Leu411.39, a SBP residue distal to the OBS, 

significantly decreased the efficacy of aripiprazole in all signalling pathways but increased its 

binding affinity. Furthermore, the increase in efficacy conferred by the addition of the SP to 

the SBP was lost at the L411.39A mutant. Thus, the efficacy increase gained through the 

interaction of the SP with the SBP appears to be dependent on Leu411.39. Our MD simulations 

predicted two distinct orientations of the SP, one in which the SP occupies the SBP (contacting 

Leu411.39, Val912.61 and Glu952.65) and one in which the SP extends towards TM3. Our 

simulations show that L411.39A promotes the latter orientation (Figure 2). The mutation of 

V912.61 and E952.65 also caused significant losses of aripiprazole’s affinity and functional effect, 

consistent with the loss of SBP interactions. We propose that the interaction of the SP with the 
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SBP promotes higher intrinsic efficacy whereas the orientation of the SP towards TM3 appears 

to be associated with lower efficacy but higher binding affinity. The combination of V912.61A 

with L411.39A, which we postulate would further promote the orientation of the SP towards 

TM3 over the SBP pose, caused an even greater (44-fold) loss of efficacy. In our recent studies 

of extended 2,3-diCl-phenylpiperazine derivatives we found that the structures of both the SP 

and the linker can modulate ligand efficacy. We proposed a mechanism whereby the interaction 

of the linker and SP with the SBP modulated the conformation of the PP in the OBS, leading 

to changes in ligand efficacy18. The relationship between distinct binding orientations of a 

single ligand at a receptor and efficacy has been explored in studies of extended bitopic ligands 

that bind the muscarinic M2 acetylcholine receptor34. In this study it is proposed that such 

ligands can bind the receptor in two distinct orientations, one that occupies the OBS and one 

purely allosteric mode that does not34. The relative propensity of such ligands to occupy the 

receptor in an orthosteric versus an allosteric orientation determined intrinsic efficacy. In this 

present study we find no evidence that aripiprazole can bind the D2R in a purely allosteric 

mode. Rather we propose that the PP of aripiprazole occupies the OBS in a rather stable pose 

in both orientations of the ligand and that the direct interaction of the SP of aripiprazole with 

the SBP confers an increase in efficacy.  We have also shown that the interaction of the SP of 

a D2R negative allosteric modulator with a similar SBP was required for allosteric 

pharmacology, whereas the PP of this ligand acted as a competitive antagonist35. Together with 

the present study this illustrates that the interaction of SP of extended ligands with the SBP of 

the D2R can confer changes in pharmacology relative to that resulted from binding of the 

primary pharmacophore of each ligand in the orthosteric binding site.

Mutation of SBP residues also influenced the binding and functional affinity of small 

orthosteric agonists not expected to interact with the SBP. The effects of these mutants upon 

aripiprazole compared to their effects on the smaller agonists were, however, distinct. In the 

case of SBP mutations that affected the action of all three agonists (V912.61F, 

L411.39A/V912.61A), the effect on aripiprazole was much greater. It should be noted, however, 

while L411.39A or the double mutation L411.39A/V912.61A did not affect the efficacy of 

dopamine or ropinirole, they caused a decrease in the functional affinity of dopamine. 

Functional affinity presumably reflects the affinity of dopamine for the receptor when coupled 

to signalling effectors36. In contrast, the binding affinity of dopamine, which was unchanged 

relative to WT, reflects the affinity of dopamine for the uncoupled state of the receptor. 

Dopamine cannot make direct contacts with this SBP residue when bound in the OBS. Thus, 
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this mutation appears to modulate the affinity with which dopamine binds to a coupled receptor 

state but does not affect the efficiency with which it stimulates receptor mediated G protein 

activation. Further, the indirect effect of this mutation upon dopamine’s functional affinity is 

distinct from the effect upon aripiprazole efficacy that we propose is caused by modulation of 

the interaction between the SP and the SBP. Nonetheless, our data indicate that residues within 

the SBP can influence the binding of even small agonists to the OBS. This effect is dependent 

upon the structure of the orthosteric agonist as the L411.39A mutation had no effect on 

ropinirole. This is difficult to reconcile with a global effect of this mutation, such as the 

impairment of transition to an active receptor state, as one would envisage that all agonists 

would be affected in a similar manner. Dopamine and ropinirole were shown to display distinct 

sensitivities to the mutation of OBS residues, for example the S1975.46A mutation ablated 

dopamine’s functional activity but had no effect on ropinirole. Thus, they are likely to have 

distinct interaction patterns with the OBS. The mutation of L411.39 may modulate the 

conformation of the OBS in a manner that affects the functional affinity of some but not all 

agonists and is dependent upon their structure and the residues they engage to exert their effect.  

Consistent with the idea of changes in the conformation of the SBP modulating the binding of 

agonists to the OBS, we have previously shown that a SP fragment of an extended D2R ligand 

acted as a negative allosteric modulator and that its binding was sensitive to SBP37. Moreover, 

allosteric modulators of the muscarinic receptor interact with residues that align to those 

forming the D2R SBP38,39. A SBP defined by extracellular TMs 1, 2 and 7 residues, has also 

been implicated in the agonist binding and/or activation of the chemokine CCR5, nicotinic acid 

(GPR109A) and angiotensin 1 receptors40-42. Thus, the SBP defined in this study is likely to be 

important for modulation of agonist action in other GPCRs. 

The biased agonism of aripiprazole is unchanged at OBS or SBP mutants

Previously, we have shown that aripiprazole displays biased agonism towards inhibition of 

cAMP over phosphorylation of ERK1/243,44. In our pERK1/2 assay, aripiprazole displayed a 

maximal response of 29% of ropinirole at the WT D2R, corresponding to a value of efficacy 

() of 0.39, 12-fold lower than that observed in the cAMP assay (Figure 5, Supplementary 

Table 5). We quantified the biased agonism of dopamine and aripiprazole between inhibition 

of cAMP production and ERK1/2 phosphorylation using ropinirole as the reference agonist21. 

Consistent with our previous results aripiprazole was biased towards the inhibition of cAMP 

production over ERK1/2 phosphorylation whereas dopamine was not (Supplementary Table 
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6)43. None of the OBS or SBP mutations caused a significant change in this bias. Note, 

however, that the window in which to detect the deleterious effects of a mutation is smaller in 

the pERK1/2 assay because of the lower efficacy (τ) of aripiprazole at the WT D2R as compared 

to that obtained in the cAMP assay. Accordingly, we were unable to quantify a change in bias 

for the mutations that abrogated aripiprazole action in the pERK1/2 assay but that also had a 

deleterious effect in the cAMP assay (for example L411.39A and V912.61A). While previous 

studies have shown that aripiprazole does not display bias between cAMP and  arrestin 

recruitment43,45, we were curious to see whether L411.39A might change this. In a β-arrestin 

translocation assay that measures the movement of a -arrestin-2-Venus to the cell surface, 

aripiprazole acted as a partial agonist at the WT D2R (Emax = 86% of maximal response of 

ropinirole, Figure 5, Supplementary Table 7). Aripiprazole displayed a significant 6-fold 

decrease in efficacy () at the L411.39A mutant as compared to the WT. No bias between cAMP 

and -arrestin-2 translocation was observed for dopamine or aripiprazole relative to ropinirole 

at the WT or L411.39A D2R (Figure 5, Supplementary Table 7). 

Figure 5: 

The mutation L411.39A decreases the intrinsic efficacy of aripiprazole at multiple 

signalling pathways.

The ability of increasing concentrations of each agonist to activate the WT or L411.39A D2SRs 

was determined through an AlphascreenTM assay measuring the inhibition of forskolin-

stimulated cAMP production (A), ERK1/2 phosphorylation (B) and β arrestin translocation (C). 

D) These data were fit to an operational model of agonism, and bias factors between each 

pathway were determined for dopamine and aripiprazole relative to ropinirole. *significant bias 
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towards one pathway (two-tailed, un-paired Students t-test, P < 0.05).
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Conclusions

The weak intrinsic efficacy of D2R partial agonists such as aripiprazole is thought to determine 

both their antipsychotic effect and low propensity to cause extrapyramidal side effects and 

hyperprolactinaemia as compared to typical antipsychotics. Our results reveal the molecular 

interactions important for this intrinsic efficacy. Aripiprazole’s structure is typical of many D2-

like DR subtype-selective ligands, namely a substituted piperazine PP and a lipophilic SP7,17. 

Previous studies have revealed that the addition of a SP to a piperazine PP can confer gains in 

affinity and subtype-selectivity through interaction with a SBP defined by the extracellular 

ends of TMs1, 2 and 77-10,18,33,46,47. In this study we find that the interaction of the quinalinone 

SP of aripiprazole with the SBP is a key determinant of the intrinsic efficacy of this drug. 

Addition of aripiprazole’s SP to the 2,3-diCl-phenylpiperazine PP or a distinct 2-

methoxyphenylpiperazine PP fragment conferred gains in both affinity and efficacy. These 

data, combined with our previous study that found that the interaction of an SP with a distinct 

indole structure with the SBP caused a decrease in intrinsic efficacy18, provides a means to 

design D2R partial agonists with desired intrinsic efficacy. 
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Methods

Materials

Aripiprazole, was synthesized in house as previously described and shown to be >98% pure43. 

Ropinirole was purchased from BetaPharma Co.Ltd (Wujiang, China) and >98% pure as 

described by the supplier. All novel compounds were synthesized as described in the 

supplementary methods. The pcDNA3L-His-CAMYEL was purchased from ATCC. 

Dulbecco’s modified Eagle’s medium (DMEM), hygromycin B, and FlpIn CHO cells were 

purchased from Invitrogen (Carlsbad, CA). Fetal bovine serum (FBS) was purchased from 

ThermoTrace (Melbourne, VIC, Australia). [3H]Spiperone, [3H]Raclopride, AlphaScreen 

reagents, Ultima gold scintillation cocktail, 384-well optiplates, and 384-well proxiplates were 

purchased from PerkinElmer (Boston, MA). All of the other reagents were purchased from 

Sigma-Aldrich (Castle Hill, NSW, Australia). 

Molecular Biology and Generation of Cell Lines

Molecular biology and generation of cell lines were performed as described previously43. Full 

details are given in the supplementary methods. cDNA in pcDNA3.1+ encoding the short 

isoform of the wild-type human dopamine D2 receptor with an N-terminal SNAP tag was 

obtained from Cisbio (Bagnols-sur-Ce`ze, France). 

ELISA and Cell signalling assays:

The ELISA protocol, ERK1/2 Phosphorylation Assay, cAMP AlphascreenTM Assay and 

Bioluminescence Resonance Energy Transfer (BRET) assays measuring intracellular cAMP 

and β-arrestin-2 recruitment to the plasma membrane assay were performed as described 

previously43,48. Full details are given in the supplementary methods. 

 

Membrane Preparation and radioligand binding assays.

Radioligand binding assays were performed as described previously43. Full details are given in 

the supplementary methods. 

Data analysis 

The results were analysed using Prism 6.0 (GraphPad Software Inc., San Diego, CA). full 

details of data analysis are given in the supplementary methods. All affinity (pKi, pKD or pKA), 

potency (pEC50), and transduction ratio (log(/KA)) parameters were estimated as logarithms. 

Page 30 of 36

ACS Paragon Plus Environment

ACS Chemical Biology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



31

Where fold-changes were calculated using the corresponding antilog values. We have 

previously demonstrated that the distribution of the antilog parameters does not conform to a 

normal (Gaussian) distribution whereas the logarithm is approximately Gaussian. Thus, since 

the application of t tests and analyses of variance assume Gaussian distribution, estimating the 

parameters as logarithms allows valid statistical comparison. All results are expressed as the 

mean ± S.D. We performed a Brown-Forsythe test (Graphpad prism 6) to assure ourselves of 

equal variance when such parameters are compared.

MD simulations

Full details of the protocol are provided in supplementary methods.

Supporting Information 

Supplementary Methods including chemical synthesis, Supplementary Figures 1-3, 
Supplementary Tables 1-7, Supplementary References. This material is available free of 
charge via the internet at http://pubs.acs.org.
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