193 research outputs found

    Global CNS gene transfer for a childhood neurogenetic enzyme deficiency: Canavan disease.

    Get PDF
    The neurogenetic prototypic disease on which we chose to test our gene therapy strategy is Canavan disease (CD). CD is an autosomal recessive leukodystrophy associated with spongiform degeneration of the brain. At present the disease is uniformly fatal in affected probands. CD is characterized by mutations in the aspartoacylase (ASPA) gene, resulting in loss of enzyme activity. In this review, recent evidence is summarized on the etiology and possible treatments for CD. In particular, we discuss two gene delivery systems representing recent advances in both viral and liposome technology: a novel cationic liposome-polymer-DNA (LPD) complex, DCChol/DOPE-protamine, as well as recombinant adeno-associated virus (AAV) vectors

    N-acetylaspartate supports the energetic demands of developmental myelination via oligodendroglial aspartoacylase

    Get PDF
    Breakdown of neuro-glial N-acetyl-aspartate (NAA) metabolism results in the failure of developmental myelination, manifest in the congenital pediatric leukodystrophy Canavan disease caused by mutations to the sole NAA catabolizing enzyme aspartoacylase. Canavan disease is a major point of focus for efforts to define NAA function, with available evidence suggesting NAA serves as an acetyl donor for fatty acid synthesis during myelination. Elevated NAA is a diagnostic hallmark of Canavan disease, which contrasts with a broad spectrum of alternative neurodegenerative contexts in which levels of NAA are inversely proportional to pathological progression. Recently generated data in the nur7 mouse model of Canavan disease suggests loss of aspartoacylase function results in compromised energetic integrity prior to oligodendrocyte death, abnormalities in myelin content, spongiform degeneration, and motor deficit. The present study utilized a next-generation “oligotropic” adeno-associated virus vector (AAV-Olig001) to quantitatively assess the impact of aspartoacylase reconstitution on developmental myelination. AAV-Olig001-aspartoacylase promoted normalization of NAA, increased bioavailable acetyl-CoA, and restored energetic balance within a window of postnatal development preceding gross histopathology and deteriorating motor function. Long-term effects included increased oligodendrocyte numbers, a global increase in myelination, reversal of vacuolation, and rescue of motor function. Effects on brain energy observed following AAV-Olig001-aspartoacylase gene therapy are shown to be consistent with a metabolic profile observed in mild cases of Canavan disease, implicating NAA in the maintenance of energetic integrity during myelination via oligodendroglial aspartoacylase

    Genome-Wide Joint Meta-Analysis of SNP and SNP-by-Smoking Interaction Identifies Novel Loci for Pulmonary Function

    Get PDF

    The JWST Early Release Science Program for Direct Observations of Exoplanetary Systems IV: NIRISS Aperture Masking Interferometry Performance and Lessons Learned

    Full text link
    We present a performance analysis for the aperture masking interferometry (AMI) mode on board the James Webb Space Telescope Near Infrared Imager and Slitless Spectrograph (JWST/NIRISS). Thanks to self-calibrating observables, AMI accesses inner working angles down to and even within the classical diffraction limit. The scientific potential of this mode has recently been demonstrated by the Early Release Science (ERS) 1386 program with a deep search for close-in companions in the HIP 65426 exoplanetary system. As part of ERS 1386, we use the same dataset to explore the random, static, and calibration errors of NIRISS AMI observables. We compare the observed noise properties and achievable contrast to theoretical predictions. We explore possible sources of calibration errors, and show that differences in charge migration between the observations of HIP 65426 and point-spread function calibration stars can account for the achieved contrast curves. Lastly, we use self-calibration tests to demonstrate that with adequate calibration, NIRISS AMI can reach contrast levels of 910\sim9-10 mag. These tests lead us to observation planning recommendations and strongly motivate future studies aimed at producing sophisticated calibration strategies taking these systematic effects into account. This will unlock the unprecedented capabilities of JWST/NIRISS AMI, with sensitivity to significantly colder, lower mass exoplanets than ground-based setups at orbital separations inaccessible to JWST coronagraphy.Comment: 20 pages, 12 figures, submitted to AAS Journal

    The \textit{JWST} Early Release Science Program for Direct Observations of Exoplanetary Systems III: Aperture Masking Interferometric Observations of the star HIP\,65426 at 3.8μm\boldsymbol{3.8\,\rm{\mu m}}

    Full text link
    We present aperture masking interferometry (AMI) observations of the star HIP 65426 at 3.8μm3.8\,\rm{\mu m} as a part of the \textit{JWST} Direct Imaging Early Release Science (ERS) program obtained using the Near Infrared Imager and Slitless Spectrograph (NIRISS) instrument. This mode provides access to very small inner working angles (even separations slightly below the Michelson limit of 0.5λ/D{}0.5\lambda/D for an interferometer), which are inaccessible with the classical inner working angles of the \textit{JWST} coronagraphs. When combined with \textit{JWST}'s unprecedented infrared sensitivity, this mode has the potential to probe a new portion of parameter space across a wide array of astronomical observations. Using this mode, we are able to achieve a contrast of ΔmF380M7.8\Delta m_{F380M}{\sim }7.8\,mag relative to the host star at a separation of {\sim}0.07\arcsec but detect no additional companions interior to the known companion HIP\,65426\,b. Our observations thus rule out companions more massive than 10{-}12\,\rm{M\textsubscript{Jup}} at separations 1020au{\sim}10{-}20\,\rm{au} from HIP\,65426, a region out of reach of ground or space-based coronagraphic imaging. These observations confirm that the AMI mode on \textit{JWST} is sensitive to planetary mass companions orbiting at the water frost line, even for more distant stars at \sim100\,pc. This result will allow the planning and successful execution of future observations to probe the inner regions of nearby stellar systems, opening essentially unexplored parameter space.Comment: 15 pages, 9 figures, submitted to ApJ Letter

    Terrestrial Very-Long-Baseline Atom Interferometry:Workshop Summary

    Get PDF
    This document presents a summary of the 2023 Terrestrial Very-Long-Baseline Atom Interferometry Workshop hosted by CERN. The workshop brought together experts from around the world to discuss the exciting developments in large-scale atom interferometer (AI) prototypes and their potential for detecting ultralight dark matter and gravitational waves. The primary objective of the workshop was to lay the groundwork for an international TVLBAI proto-collaboration. This collaboration aims to unite researchers from different institutions to strategize and secure funding for terrestrial large-scale AI projects. The ultimate goal is to create a roadmap detailing the design and technology choices for one or more km-scale detectors, which will be operational in the mid-2030s. The key sections of this report present the physics case and technical challenges, together with a comprehensive overview of the discussions at the workshop together with the main conclusions

    The JWST Early Release Science Program for Direct Observations of Exoplanetary Systems. IV. NIRISS Aperture Masking Interferometry Performance and Lessons Learned

    Get PDF
    We present a performance analysis for the aperture masking interferometry (AMI) mode on board the James Webb Space Telescope Near Infrared Imager and Slitless Spectrograph (JWST/NIRISS). Thanks to self-calibrating observables, AMI accesses inner working angles down to and even within the classical diffraction limit. The scientific potential of this mode has recently been demonstrated by the Early Release Science (ERS) 1386 program with a deep search for close-in companions in the HIP 65426 exoplanetary system. As part of ERS 1386, we use the same data set to explore the random, static, and calibration errors of NIRISS AMI observables. We compare the observed noise properties and achievable contrast to theoretical predictions. We explore possible sources of calibration errors and show that differences in charge migration between the observations of HIP 65426 and point-spread function calibration stars can account for the achieved contrast curves. Lastly, we use self-calibration tests to demonstrate that with adequate calibration NIRISS F380M AMI can reach contrast levels of ∼9–10 mag at ≳λ/D. These tests lead us to observation planning recommendations and strongly motivate future studies aimed at producing sophisticated calibration strategies taking these systematic effects into account. This will unlock the unprecedented capabilities of JWST/NIRISS AMI, with sensitivity to significantly colder, lower-mass exoplanets than lower-contrast ground-based AMI setups, at orbital separations inaccessible to JWST coronagraphy

    Data from: Postmating isolation and genetically variable host use in ecologically divergent host forms of Neochlamisus bebbianae leaf beetles

    No full text
    Ecological speciation studies have more thoroughly addressed premating than postmating reproductive isolation. This study examines multiple postmating barriers between host forms of Neochlamisus bebbianae leaf beetles that specialize on Acer versus Salix trees. We demonstrate cryptic isolation and reduced hybrid fitness via controlled matings of these host forms. These findings reveal host-associated postmating isolation, although a non-ecological, ‘intrinsic’ basis for these patterns cannot be ruled out. Host preference and performance results among cross types further suggest sex-linked maternal effects on these traits, while family effects indicate their genetic basis and associated variation. Genes of major effect appear to influence these traits. Together with previous findings of premating isolation and adaptive differentiation in sympatry, our results meet many assumptions of ‘speciation with gene flow’ models. Here, such gene flow is likely asymmetric, with consequences for the dynamics of future ecological divergence and potential ecological speciation of these host forms
    corecore