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Abstract

Breakdown of neuro-glial N-acetyl-aspartate (NAA) metabolism results in the failure of 

developmental myelination, manifest in the congenital pediatric leukodystrophy Canavan disease 

caused by mutations to the sole NAA catabolizing enzyme aspartoacylase. Canavan disease is a 

major point of focus for efforts to define NAA function, with available evidence suggesting NAA 

serves as an acetyl donor for fatty acid synthesis during myelination. Elevated NAA is a diagnostic 

hallmark of Canavan disease, which contrasts with a broad spectrum of alternative 

neurodegenerative contexts in which levels of NAA are inversely proportional to pathological 

progression. Recently generated data in the nur7 mouse model of Canavan disease suggests loss of 

aspartoacylase function results in compromised energetic integrity prior to oligodendrocyte death, 

abnormalities in myelin content, spongiform degeneration, and motor deficit. The present study 

utilized a next-generation “oligotropic” adeno-associated virus vector (AAV-Olig001) to 

*Address correspondence to: Dr. Paola Leone, Cell & Gene Therapy Center, RowanSOM, 2 Medical Center Drive, Stratford, NJ 
08084, USA, leonepa@rowan.edu, ph: (856) 566 6334. 

Author Contribution:
JSF, PL, CJ, SJG, TJM, RJS conceived the experiments and wrote the article. IW, VM, LTB, DW, DD assisted with the acquisition and 
analysis of data.

Potential Conflicts of Interest
AAV Oligo patent (TM, SJG) applied for by UNC. RJS is the founder of AskBio and Bamboo Therapeutics. PL is scientific co-
founder of Bamboo Therapeutics and scientific advisory Board member of Agilis Biotherapeutics.

Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our 
customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of 
the resulting proof before it is published in its final citable form. Please note that during the production process errors may be 
discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

HHS Public Access
Author manuscript
Neurobiol Dis. Author manuscript; available in PMC 2017 December 01.

Published in final edited form as:
Neurobiol Dis. 2016 December ; 96: 323–334. doi:10.1016/j.nbd.2016.10.001.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Carolina Digital Repository

https://core.ac.uk/display/304665466?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


quantitatively assess the impact of aspartoacylase reconstitution on developmental myelination. 

AAV-Olig001-aspartoacylase promoted normalization of NAA, increased bioavailable acetyl-CoA, 

and restored energetic balance within a window of postnatal development preceding gross 

histopathology and deteriorating motor function. Long-term effects included increased 

oligodendrocyte numbers, a global increase in myelination, reversal of vacuolation, and rescue of 

motor function. Effects on brain energy observed following AAV-Olig001-aspartoacylase gene 

therapy are shown to be consistent with a metabolic profile observed in mild cases of Canavan 

disease, implicating NAA in the maintenance of energetic integrity during myelination via 

oligodendroglial aspartoacylase.
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Introduction

Canavan disease is an autosomal recessive leukodystrophy caused by deficiency in 

aspartoacylase (ASPA) (Hagenfeldt et al., 1987), an oligodenroglial enzyme (Baslow et al., 

1999) (Madhavarao et al., 2004) (Dugas et al., 2006) (Francis et al., 2011) (Zhang et al., 

2014) that catabolizes N-acetyl-aspartate (NAA). NAA has multiple hypothesized functions 

as an osmolyte (Baslow, 2003; Taylor et al., 1995), a building block for myelin 

synthesis(Chakraborty et al., 2001; Madhavarao et al., 2005; Mehta and Namboodiri, 1995), 

a metabolic intermediate(D’Adamo and D’Adamo, 1968) (Mehta and Namboodiri, 1995), 

and developmental signal molecule(Francis et al., 2006). Based on these diverse roles, it 

follows that the effects of dysregulated NAA in Canavan disease are likely multi-factorial. 

Given the genetic defect underlying Canavan disease is manifest primarily in the 

oligodendroglial compartment, targeting of this specific lineage is required to address the 

relative prominence of these multifactorial effects and provide insight into pathogenic 

mechanisms of relevance to clinical end points.

NAA rises linearly with age in Canavan disease(Janson et al., 2006b; Leone et al., 2012) 

alongside progressive spongiform encephalopathy and diffuse white matter loss. 

Mitochondrial dysfunction has long been suspected based on ultrastructural 

studies(Gambetti et al., 1969), and a relatively unexplored role for NAA in uncoupling the 

Krebs cycle from myelin lipid synthesis has recently come into focus (Francis et al., 2014). 

NAA synthesis is an energy-intensive process that is tightly coupled to mitochondria derived 

substrate(Bates et al., 1996). Consequently, reductions in NAA are regarded as a marker of 

compromised energetic integrity across the neurodegenerative spectrum, with the notable 

exception of Canavan disease. Canavan disease, in contrast to disorders such as Alzheimer’s 

disease(Huang et al., 2001), multiple sclerosis(De Stefano et al., 2001), and Huntington’s 

disease(Sturrock et al., 2010), is the sole brain disorder in which increases in brain NAA are 

considered pathological.

Clinical gene therapy trials have been undertaken with the aim of lowering pathologically 

elevated NAA(Janson et al., 2002; Leone et al., 2000; Leone et al., 2012). These trials 
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employed technology limited in tropism, not capable of targeting oligodendroglia. While 

neurotropic delivery of ASPA was successful in broadly lowering NAA, this was insufficient 

to maintain normal myelination or true reversal of phenotype (Leone et al., 2012). Because 

ASPA naturally occurs in oligodendrocytes, it is possible that neurotropic intervention failed 

to address pathological end points of specific relevance to white matter producing cells. The 

availability of animal models for Canavan disease lagged behind human experimentation, 

resulting in gaps in our knowledge of the nature of the role of NAA in myelination. The nur7 

transgenic mouse(Traka et al., 2008) selected for the current study recapitulates the essential 

clinical features of Canavan disease without extraneous pathology not reported in the human 

disease(Ahmed et al., 2016). The ability to target oligodendrocytes in nur7 mice would 

contribute greatly to both our understanding of the role of NAA in myelination and the 

definition of end point measures of clinical relevance. We present here the application of a 

next-generation “oligotropic” AAV vector to the nur7 model and show profound 

improvements in white matter integrity and motor function are associated with the correction 

of early energetic deficit following the reconstitution of ASPA in oligodendrocytes. The 

clinical significance of early metabolic rescue in this pre-clinical model is supported by 

correlative data from human siblings harboring an R71H Aspa mutation associated with 

unusually mild Canavan disease (Janson et al., 2006a), suggesting an underlying 

compromise in oxidative white matter respiration is of direct relevance to phenotype. These 

results support a model in which loss of bioavailable NAA leads to defining early energetic 

stress, which is reversible through normalization of NAA metabolism in the oligodendroglial 

compartment specifically.

Results

Targeted transduction of oligodendroglia in vivo with “oligotropic” AAV-Olig001

A novel oligotropic AAV gene delivery system (AAV-Olig001) was generated by a directed 

evolution screening process to identify viable variations in vector capsid promoting 

oligodedroglial tropism. After in vitro validation (data not shown), in vivo oligodendroglial 

tropism was quantified. An AAV-Olig001-GFP reporter vector was injected into the corpus 

callosum of adult wild type mice and tropism scored by dual-label immunofluorescence 

(Fig. 1A). Approximately 90% of GFP-positive cells in the brains of transduced animals co-

labeled with the oligodendrocyte-specific antigen Olig2, 7% positive for NeuN, and 3% 

positive for GFAP, thus confirming the tropism of AAV-Olig001 for white matter-producing 

cells (Fig. 1B). AAV-Olig001-GFP was then administered to postnatal day 2-3 (P2-3) 

animals via intraparenchymal injection to target precursor and immature oligodendrocytes in 

subcortical white matter tracts (Sauvageot and Stiles, 2002). Widespread GFP fluorescence 

was observed two-weeks post-transduction, with strong GFP labeling of white matter tracts 

(Fig. 1C) and outlying gray matter-rich areas of transduced brains which co-labeled with 

Olig2 (Fig. 1D).

Restoration of early energetic deficit

Gross neuropathology and oligodendrocyte loss in nur7 mice is first evident at 3 weeks of 

age(Traka et al., 2008) and is preceded by energetic stress(Francis et al., 2012). A codon-

optimized human ASPA cDNA was packaged into the AAV-Olig001 system for delivery to 
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nur7 mice at postnatal day 2-3 (P2-3). Vector was administered via the intraparenchymal 

route, using methodology identical to that employed for tropism studies (Fig. 1C&D). AAV-

Olig001-ASPA transduced brains were analyzed by HPLC for whole-brain NAA content at 2 

weeks of age to confirm ASPA transgene functionality. AAV-Olig001-ASPA brains had a 

significant two-fold reduction in NAA relative to both AAV-Olig001-GFP nur7 and naïve 

nur7 negative controls (ASPA = 5.095 +/−0.24 mMol/g; GFP=8.65 +/−0.28mMol/g, 

naïve=8.8+/−1.08mMol/g), clearly visible on chromatograms (Fig. 2B & C) bringing whole 

brain NAA to within the range of wild type (4.22+/−0.42mMol/g) references (Fig. 2A). 

Concurrent with reduced NAA was a significant increase in both acetyl coenzyme A 

(AcCoA; Fig. 2D), reflecting increases in bioavailable acetyl groups, and malonyl coenzyme 

A (MalCoA; Fig. 2E), the committed step of entry of AcCoA to fatty acid synthesis. 

Because fatty acid synthesis and the Krebs cycle share a substrate requirement for AcCoA, 

we hypothesized that the provision of ASPA to developing nur7 oligodendrocytes would act 

to uncouple myelination from energetic metabolism. AMP, ATP, and reduced and oxidized 

glutathione (GSH, GSSG) were analyzed by HPLC in 2 week old AAV-Olig001-ASPA 

transduced brains. We observed a two-fold increase in ATP content in AAV-Olig001-ASPA 

brains (Fig. 2F) (wild type ATP=4.15+/−0.521μMol/g; nur7 GFP=2.05+/−0.199 μMol/g; nur7 

ASPA=3.31+/−0.397μMol/g) and an ATP/AMP ratio that was not significantly different 

from wild type controls (Fig. 2G), indicating the rescue of early energetic abnormalities. In 

addition, a significant increase in the ratio of reduced to oxidized glutathione (GSH:GSSG) 

in AAV-Olig001-ASPA brains (Fig. 2H) suggested this improved energetic status resulted in 

a reduction in oxidative stress.

Oligodendroglial ASPA reconstitution rescues motor deficit

In order to ascribe phenotypic significance to the observed rescue of early energetic 

improvements, AAV-Olig001-ASPA transduced animals were tested on an accelerating 

rotarod for latency to fall at 12 weeks of age and compared with negative and age-matched 

wild type reference animals (Fig. 3A). ASPA-transduced animals demonstrated an 

improvement in rotarod performance (nur7 ASPA=274+/−13.2 seconds; nur7 GFP=152+/−8.0 

seconds; p=0.0015) that was not significantly different from wild type (295+/−11.37 

seconds). At the conclusion of rotarod testing, animals were assessed for daily activity 

patterns over a week using automated activity wheels. AAV-Olig001-ASPA-transduced 

animals demonstrated a highly significant (p=0.00021) improvement in daily activity (Fig. 

3B & C). Both AAV-Olig001-ASPA and AAV-Olig001-GFP animals had normal 24-hour 

daily cycles with identical nocturnal active periods, indicating that differences in activity 

were not due to differences in circadian rhythms. Rotarod and activity data indicate the 

complete rescue of motor deficit by AAV-Olig001-ASPA is associated with early metabolic 

rescue.

AAV-Olig001-ASPA promotes normal myelination and corrects vacuolation

At the conclusion of activity testing, animals were sacrificed and brains processed for 

myelin basic protein (MBP) staining to provide an index of myelination in treated and 

control brains. This revealed a dramatic brain-wide increase in myelin content in AAV-

Olig001-ASPA brains indistinguishable from wild type controls (Fig. 4A–F). As the rotarod 

test is a sensitive measure of cortical integrity (Hamm et al., 1994), including that 
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determined by MBP content (Kuhn et al., 1995), we quantified MBP length density (MBP-

LD) in the motor cortex of treated and control brains by unbiased stereology. Estimates of 

MBP LD revealed an increase in in AAV-Olig001-ASPA brains relative to controls that was 

again indistinguishable from wild-type (wild type=0.057+/−0.0056μm/mm3; ASPA 

nur7=0.053+/−0.0046μm/mm3; GFP nur7=0.031+/−0.0038μm/mm3) (Fig. 4G & H). Areas of 

treated brains that characteristically present with intense vacuolation manifest a striking 

increase in MBP (Fig. 4B). Serial H&E stained sections processed in AAV-Olig001-ASPA 

brains to quantify thalamic vacuole area fraction by unbiased stereology (Fig. 5G), revealed 

complete rescue of vacuolation. Both naïve and AAV-Olig001-GFP nur7 brains had a near 

20% loss of thalamic volume to vacuolation (17.25+/−2.2% and 16.82+/−1.7%, respectively) 

(Fig. 5A&G), which correlated with abnormal MBP staining (Fig. 5B, D, F). AAV-Olig001-

ASPA nur7 brains exhibited 0.08% vacuolation of the thalamus (Fig 5C&D), which was not 

significantly different from wild type reference controls (0.10%;), and can likely be 

attributed to artifact from immunohistochemical processing.

White matter in the brain is produced by oligodendroglia. Given the increase in MBP 

density in nur7 AAV-Olig001-ASPA brains (Fig. 4), it is likely that the reconstitution of 

ASPA activity in nur7 mice promotes oligodendroglial viability. Consistent with this, areas 

of the nur7 brain that manifest vacuolation, such as the medial septum (Fig. 6A) and the 

thalamus (Fig. 6B), showed increases in staining for the late-stage oligodendrocyte marker 

CC1. The medial septum and thalamus of AAV-Olig001-ASPA brains were sampled using 

unbiased stereology for CC1-positive cell numbers, which revealed a significant 2-fold 

increase in the medial septum (Fig. 6C) three-fold increase in the thalamus (Fig. 6D). 

Numbers of thalamic APC-positive cells in AAV-Olig001-ASPA brains (97856.53+/−12937) 

were nearly 90% of age-matched wild type levels as compared to AAV-Olig001-GFP brains 

(36554.12+/−4514.4), which were only 37% of wild type numbers (110251+/−8699). Using 

DAPI counterstain to label cell nuclei, the same sections were scored for total cell numbers 

(Fig. 6E). Total (DAPI-positive) cell numbers in the AAV-Olig001-ASPA nur7 thalamus 

were not significantly different from wild type reference controls (94%), while AAV-

Olig001-GFP total thalamic numbers were only 50% of wild type, suggesting that the cell 

loss in the nur7 thalamus primarily affects the oligodendroglial lineage. Finally, 12-week 

brains were immunostained for ASPA and processed for HPLC to confirm the longer-term 

expression and functionality of AAV-Olig001 delivered ASPA. Robust ASPA staining was 

seen in both subcortical white matter tracts (Fig. 7A) and outlying gray matter-rich areas 

(Fig. 7C) of AAV-Olig001-ASPA transduced brains. There was a complete absence of ASPA 

staining in all areas of control nur7 brains (Fig. 7B, D). ASPA staining in AAV-Olig001-

ASPA brains also co-localized with Olig2 in 12-week old animals (Fig. 7 E, F, G), thereby 

confirming persistent expression in oligodendrocytes. Whole brain NAA levels in AAV-

Olig001-ASPA animals were significantly lower than controls, and not indistinguishable 

from age-matched wild type references, (Fig. 7H) indicating long term metabolic correction.

Human correlative data suggests metabolic stress in typical Canavan disease, with a 
benign pattern in mild Canavan disease

AAV-Olig001-ASPA intervention in the nur7 mouse resulted in increased acetyl-CoA and 

improvements in ATP/AMP ratio, in conjunction with decreases in global NAA, which 
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suggests a shift toward aerobic respiration. Previously, we had described two sisters with an 

unusually mild presentation of Canavan disease, due to compound heterozygosity with 

R71H mutation(Janson et al., 2006a). Both sisters have been followed since diagnosis and 

remain developmentally appropriate for age. As part of ongoing surveillance we tested brain 

lactate levels using multi-voxel imaging, while simultaneously measuring NAA using 

precise single-voxel imaging. We found significant differences (Fig. 8) between NAA/

creatine ratios of both mildly affected sisters compared to severely affected Canavan patients 

(age 15–24 months), as well as significant differences in the lactate content of white matter. 

Genomic DNA isolated from whole blood samples from both R71H patients confirmed the 

absence of mutations in Nat8L (data not shown), controlling for genetic abnormalities that 

may confound the interpretation of NAA levels. Also of note, we found that until the age of 

six months, lactate levels (as measured with CSI) are quite similar in mild and typical 

Canavan disease, at which point lactate levels in homozygous Canavan patients significantly 

increases (data not shown). This trend parallels NAA increases in typically severe cases but 

not in the R71H siblings, suggesting progressive metabolic dysregulation is defined by 

increases in lactate at least as much as it is by NAA.

Discussion

Unlike neuronal transgene expression seen with previous studies (Ahmed et al., 2013) 

(Klugmann et al., 2005) (McPhee et al., 2005) (Matalon et al., 2003), the present study 

successfully reconstituted ASPA in its natural compartment. Evidence of abnormalities in 

oxidative metabolism upstream of gross pathology associated with chronically elevated 

NAA in Canavan disease (Francis et al., 2012) invite a comparison with a significant body of 

published data suggesting low NAA equates to impaired energetic integrity (Moffett et al., 

2007). Oligodendrocytes are vulnerable to low energy conditions that impair function 

(Rinholm et al., 2011), and the present study suggests compromised oligodendrocyte 

integrity in the setting of Canavan disease is of relevance to the role of NAA in myelination. 

Oligodendrocytes engage in a significant degree of metabolic reciprocity with neurons to 

maintain homeostasis under conditions of energy deprivation (Funfschilling et al., 2012). 

The rescue of AcCoA, MalCoA, and ATP by AAV-Olig001-ASPA in nur7 mice provides 

evidence for NAA catabolism contributing to both myelination and oxidative metabolism, 

and suggests NAA acts as an energy shuttle from the axon to the oligodendrocyte, thereby 

building on a theme of neuro-glia metabolic coupling. Glycolytic AcCoA contributes to 

myelin lipid synthesis, with a portion of this requisite substrate provided to oligodendroglia 

in the form of NAA(D’Adamo and D’Adamo, 1968) (Burri et al., 1991). In the absence of 

NAA, the resultant diversion of glucose-derived AcCoA to fatty acid synthesis is 

hypothesized to result in a net loss of ATP (Harris and Attwell, 2012). ASPA is required for 

NAA to contribute substrate for fatty acid synthesis, which predicts adverse energetic 

consequences for the loss of ASPA function in Canavan disease. The rescue of oxidative 

metabolic abnormalities in nur7 mice by AAV-Olig001-ASPA is consistent with this 

hypothesized net energetic loss, lending support to the use of non-invasive markers of 

cerebral glucose metabolism in future clinical trials for Canavan disease.

Relatively more modest improvements reported for other gene therapy interventions bear 

closer scrutiny (Ahmed et al., 2016) (Klugmann et al., 2005). The lack of evidence of direct 
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benefit to oligodendrocytes in these interventions is likely attributable to tropism and cell-

specific effects obtained with AAV-Olig001. While improvement has been reported with 

systemic intravenous delivery using neurotropic AAV, those studies(Ahmed et al., 2013), 

unlike the present, did not use unbiased stereology to quantify the association between 

improvements in histopathology and vector tropism, making it difficult to assess direct 

effects on end points of direct relevance to myelination. A reliance on the assumption that 

NAA is the primary index of pathology in Canavan disease results in an emphasis on 

atypical findings (Ahmed et al., 2016), which are not manifest in the clinical population 

(McPhee et al., 2006). While the enigmatic nature of NAA function currently accommodates 

these speculative mechanisms, we would argue end points generated by the physiologically 

appropriate reconstitution of ASPA using AAV-Olig001 in the present study offer a more 

direct and reproducible index of NAA function during developmental myelination. In this 

context, it should be noted that the present study did not directly assess histopathology in 

non-targeted areas of the brain, such as the cerebellum and brain stem that characteristically 

present with vacuolation, and there is some scope for improvement of the definition of end 

point measures that are relevant to phenotypic rescue of a model system that presents with 

global abnormalities in the CNS. However, the clear improvements in metabolic indices 

taken from whole treated brains suggest oligodendroglial targeting is a significant 

improvement on previous neurotropic vectors. Future studies will likely require an 

assessment of the relationship of vector spread to the integrity of specific anatomical 

compartments in older animals that are post developmental myelination.

The acetate moiety of NAA incorporated into myelin lipids (Burri et al., 1991) via ASPA 

(Chakraborty et al., 2001) is not rate limiting for myelination, as myelin is produced in 

Canavan disease patients and ASPA null rodent models. Moreover, a case study of a child 

without detectable NAA showed only moderately delayed myelination(Martin et al., 2001). 

The abovementioned child exhibited a loss of function mutation in NAA synthase (Nat8L; 

(Wiame et al., 2010), suggesting NAA is not an absolute requisite, raising the possibility of 

elevated NAA being directly toxic to white matter.

To determine if myelination in the setting of Canavan disease could be improved by 

targeting NAA synthesis independently of ASPA, Guo et al.(Guo et al., 2015) generated 

nur7/Nat8L-null double mutants that produced neither NAA nor ASPA and presented 

improvements in myelination and motor function, suggesting that loss of Aspa was 

secondary to pathological levels of accumulated NAA. Maier et al. (Maier et al., 2015) 

likewise reported ostensibly similar double mutants that presented with extended lifespan. 

The original presentation of the nur7 mouse model documents consistent survival up to at 

least 20 weeks of age (Traka et al., 2008). Our own experience with this model(Francis et 

al., 2012) (Francis et al., 2014), including the present study, does not support claims of 

premature death of the nur7 mouse at 4 weeks of age. In addition, mice null for the aralar1 

subunit of the malate-aspartate shuttle present with abnormally low NAA and 

hypomyelination as a consequence of reduced substrate for NAA synthesis (Ramos et. al. 

2011), conflicting claims of normal myelination in Nat8L null mutants. These 

inconsistencies do not preclude consideration of direct effects resulting from elevated NAA, 

but given the association of abnormally low NAA with pathology in numerous non-Canavan 

disease contexts, the ablation of Nat8L activity in neurons is arguably non-specific. A 
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possible compromise to be made in this context is the fact that NAA synthesis relies on 

mitochondrial aspartate that also fuels the transfer of cytosolic reducing equivalents to 

mitochondria for oxidative phosphorylation (McKenna et al., 2006). The ablation of Nat8L 
may therefore result in a net energy saving by preserving metabolic substrate in a manner 

similar to our hypothesized role for ASPA-derived acetyl groups during myelination (Francis 

et al., 2012). Indeed, NAA synthesis is already downregulated in Canavan disease(Moreno et 

al., 2001), which potentially compensates for the compromised contribution of NAA to the 

energetic demands of myelination (Harris and Attwell, 2012). The claims of the present 

study and those of Guo et. al. (Guo et al., 2015) and Maier et. al. (Maier et al., 2015) may 

therefore find common ground in a focus on overall energetic integrity. Using the 

quantitative metabolic, histopathological, and behavioral end points presented here, future 

studies will be able to assess the relative effects of acetate deprivation and NAA toxicity 

more directly to provide a more nuanced view of NAA function of general relevance to 

metabolic integrity in the central nervous system.

Materials and Methods

Cloning of functional ASPA and packaging into oligotropic AAV

A codon optimized human ASPA cDNA was designed and synthesized using a 

commercially available algorithm tool (Integrated DNA Technologies, Coralville, IA, USA) 

and subcloned into plasmid pTRS-KS-CBh-GFP (National Gene Vector Biorepository), to 

generate pTRS-KS-CBh-ASPA. AAV-Olig001 capsid used to package pTRS-KS-CBh-ASPA 

was developed in the laboratories of S. Gray and T. McCown at the University of North 

Carolina at Chapel Hill, through a directed evolution screening process similar to that 

described(Gray et al., 2010). AAV-Olig001 vector used in these studies packaged a self-

complementary (sc) genome with transgene expression mediated by the CBh promoter and 

bovine growth hormone polyA(Gray et al., 2011). AAV vectors were produced using 

methods developed by the University of North Carolina Vector Core facility, as previously 

described(Clement and Grieger, 2016). In brief, production plasmids (pXX6-80, pTRS-KS-

CBh-EGFP or pTRS-KS-CBh-ASPA, and pXR-Olig001) were triple-transfected into 

suspension HEK293 cells. AAV vectors were purified from cells by iodixanol gradient 

centrifugation, followed by ion-exchange chromatography. AAV was dialyzed in PBS 

supplemented with 5% D-Sorbitol and an additional 212 mM NaCl (350 mM NaCl total). 

Genomic titer was determined by quantitative PCR and confirmed by PAGE and silver stain.

Animals

Nur7 mice were obtained commercially (Jackson Laboratory, Bar Harbor, ME, USA), and 

maintained at Rowan SOM animal facility under IACUC approval. All studies were 

conducted in accordance with the United States Public Health Service’s Policy on Humane 

Care and Use of Laboratory Animals. Homozygous nur7 animals were generated by pairing 

of heterozygotes and genotyped using a custom SNP real time qPCR assay. AAV vectors 

were administered to isoflurane-anesthetized adult animals using stereotactic coordinates. A 

sterile 10μl Hamilton syringe was introduced to the corpus callosum and 0.5μl (2×1012 viral 

genomes/ml) of AAV-Olig001 was delivered at a rate of 0.1μl/min using a digital infusion 

pump. Neonatal surgeries were performed on P2-3 cryoanesthetized animals. Animals were 
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placed in a custom epoxy body mold and a sterile 5μl Hamilton syringe was directed to 

coordinates targeting the cingulum (−1.2mm DV) and internal capsule (−2.4mm DV) of both 

cerebral hemispheres (i.e., 4 injections per animal). Each injection consisted of 0.5μl of a 

2×1012 vg/ml vector stock, which yields 4×109 vg per animal. Injections were performed 

with a digital infusion pump at a rate of 0.25μl/min.

Clinical Subjects

All data were obtained under IRB-approved research protocols. Patients underwent MRI and 

proton spectroscopy (H1-MRS) at Children’s Hospital of Philadelphia. H1-MRS provides a 

non-invasive method of performing quantitative and semi-quantitative measurements of 

brain metabolites. There are two techniques commonly used to detect NAA and other 

metabolites, multi-voxel chemical shift imaging (CSI) and single-voxel spectroscopy (SVS). 

Our group has used SVS extensively in the past, which provides a greater level of sensitivity 

but is unable to quantify lactate due to contamination by lipid signals. For this comparison, 

subjects were imaged twice on a Siemens 1.5T magnet at Children’s Hospital of 

Philadelphia using SVS with STEAM pulse sequence to detect NAA and using CSI to detect 

lactate. Two mildly affected patients with R71H mutation were compared to three severely 

affected patients with common mutations, and mean metabolite levels were compared using 

Student’s t-test. Sequencing of Nat8L was performed on genomic DNA isolated from whole 

blood taken from both mildly affected patients under approved IRB guidelines. Raw 

sequence data was generated using a commercial facility (Genewiz, South Plainfield, NJ) 

and homology with the deposited normal CDS confirmed with Vector NTI® software 

(ThermoFisher Scientific, Waltham, MA).

HPLC

All target metabolites in mouse brains were analyzed in a single run as previously 

described(Lazzarino et al., 2003), and sample sizes for all HPLC end points are identical. 

Samples were prepared from tissue flash frozen in liquid nitrogen. Frozen brains were 

homogenized in an acetonitrile K2HPO4 (10mM) precipitation solution (3:1 v/W), extracted 

twice with chloroform, and stored at −80 °C until analyzed. 50 μL of each sample was run 

on a Thermo Scientific HPLC system equipped with a Surveyor PDA plus UV detector, a 

Hypersil BDS-C18 column (5 μm particle size; 25 cm × 4.9 mm), and analyzed with 

ChromQuest software (Thermo Scientific). Target metabolites in samples were quantified 

against reference standards. Data is presented as the mean per group +/− the standard error 

of the mean in all HPLC graphs.

Immunohistochemistry

Immunohistochemistry was performed on 40μm free-floating sections. Animals were 

anesthetized and transcardially perfused with ice-cold 0.9% saline followed by 4% buffered 

paraformaldehyde (PFA). Perfused brains were removed and post fixed in 4% PFA 

overnight, then cryoprotected in an ascending sucrose gradient. Cryoprotected brains were 

flash frozen and stored at −80 °C until processed. The entire forebrain was serially sectioned 

and maintained in sequence for subsequent stereological sampling. Immunohistochemistry 

for CC1, Olig2, GFAP, NeuN, and MBP was performed using commercially available 

antibodies (EMD Millipore, Gibbstown, NJ, USA). ASPA antibody was custom-made as 
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previously described(Francis et al., 2011). GFP co-labeling with Olig2, NeuN, and GFAP 

for tropism analysis employed laser-scanning confocal microscopy and scoring co-labeled 

GFP-positive cells in Z-stacks. Three individual brains transduced with GFP reporter vector 

were serially sectioned 1mm anterior and 1mm posterior from bregma (~25 sections total). 

Every third section was stained for either Olig2, NeuN, or GFAP and processed using CY3-

conjugated secondary antibodies (EMD Millipore Gibbstown, NJ, USA). A region of 

interest (ROI) measuring 1mm x 1mm was delineated within the corpus callosum of each 

section in each series and Z-stacks were generated every 500μm2 within the ROI (10μm 

depth, step size of 2μm). Total numbers of GFP-positive cells were scored within Z-stacks 

using Nikon NIS elements software and GFP-Olig2/NeuN/GFAP co-labeled cells were 

expressed as a percentage of GFP-positive.

Stereology

Estimates of N for APC and DAPI in sections were performed using the optical fractionator 

(k=4). APC was visualized using a Cy3-conjugated secondary antibody and DAPI using a 

commercially available mountant (SlowFade™, Molecular Probes, Eugene, OR, USA). 

Fluorescent images were collected with a laser scanning confocal microscope and Nikon 

NIS Elements software. Z-stacks (2μm step size) were generated throughout the region of 

interest to generate optical dissectors for stereological sampling (400μm dissector spacing, 

14μm dissector height). Z stacks were then transferred to Stereologer software (Stereology 

Resource Center Inc., Fl, USA) for sampling. Stereologer software was calibrated to actual 

XYZ measurements made during confocal image acquisition. Estimates of N for APC and 

DAPI were calculated using the formula, N = 2 x ΣI x 1/ssf x 1/asf x 1/hsf x 1/psd. MBP-

positive fiber length density (MBP-LD) was estimated using a computer generated spherical 

probe (“space balls”) to score for isotropic fiber-probe interactions(Mouton et al., 2002). 

Total MBP length was divided by the volume of the region of interest to give a final length 

density (LD) estimate. Estimates for vacuole area volume fraction were generated also using 

the optical fractionator (k=4) and an area fraction probe on H&E stained sections from the 

same brains as used for estimates of APC and DAPI. Vacuole area volume fraction was 

calculated using the formula, ΣPobj/ΣPref=Aobj/Aref= Vobj/Vref, where Pobj = region points 

interacting with plaques, Vobj = region points interacting with the reference space, A= area, 

V= volume. Sampling integrity was monitored by maintaining a coefficient of sampling 

variance (CE) of <8% in order to identify true biological variance. Group means were 

compared between treatment and control groups using Student’s t test for unpaired means at 

the 95% confidence interval.

Analysis of motor function

Rotarod testing apparatus (MedAssociates Inc.) was used to assess motor function of all 

mice at 12 weeks of age. Testing took place over three consecutive days, with the first two 

days consisting of pre-trial training. Each day individual animals completed three 

consecutive runs with a 60 second delay between. On the third day, the average latency to 

fall of three runs was calculated for each animal. Significant differences in mean latency to 

fall were determined by Student’s t test for unpaired means. Daily activity patterns were 

measured using running wheels linked to wireless automated data collection software 

(Wheel Manager, MedAssociates Inc). Wheels were placed in cages with single mice for 7 
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consecutive days, and wheel turns recorded constantly. Data were analyzed using Wheel 

Analysis software (MedAssociates Inc.) and daily activity patterns used to calculate 

periodicity and confirm normal circadian rhythms.
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Highlights

• The loss of aspartoacylase function in Canavan disease is proposed to 

cause early oxidative stress

• Metabolic deficits are specific to oligodendrocytes

• Reconstitution of aspartoacylase in oligodendrocytes promotes 

energetic integrity

• Oligodendrocytic energetic integrity in crucial for developmental 

myelination

• Phenotypic rescue requires the targeting of oligodendrocytes 

specifically
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Figure 1. 
Oligodendroglial tropism of AAV-Olig001. (A) Native GFP fluorescence in corpus callosum 

of an animal transduced with AAV-Olig001-GFP. (B) Serial sections of AAV-Olig001-GFP-

transduced brains were scored for co-labeling with oligodendrocyte (Olig2), neuronal 

(NeuN), or astrocytic (GFAP) antigens to assess tropism. Mean percentage of GFP-positive 

cells co-labeling with each antigen presented (n=3, Mean +/− SEM). Over 90% of GFP-

positive cells co-label with Olig2. (C) Global transduction of neonatal brains with AAV-

Olig001-GFP. Native fluorescence shown in a brain two-weeks post-treatment, highlighting 

strong labeling of subcortical white matter tracts, motor cortex, and basal ganglia. (D) GFP-

positive cells within motor cortex have oligodendroglial morphology and co-label with 

Olig2 (red).
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Figure 2. 
Rescue of metabolic defects in nur7 brain. (A) Reductions in whole brain NAA in 2 week-

old AAVOlig001-ASPA brains to near age-matched wild type levels (***p<0.001/n=5). 

Representative chromatograms of AAV-Olig001-GFP (B) and AAV-Olig001-ASPA (C) 

brains. Rescue of whole brain AcCoA (D) and MalCoA (E) levels in the same brains with 

simultaneous recovery of ATP (F), ATP/AMP ratio (G) and GSH:GSSG ratio (H). *p<0.05, 

**p<0.01 Mean +/− SEM shown. Significant differences between groups determined using 

two-tailed Studnet T-test.
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Figure 3. 
Rescue of motor function by AAV/Olig001-ASPA. (A) AAV/Olig001-ASPA animals 

presented with a highly significant increase in latency to fall on the accelerating rotarod at 

12 weeks of age. **p<0.01; n=10. (B) At the conclusion of rotarod testing the same animals 

were assessed for daily activity levels using automated running wheels for 7 days. Activity 

levels, measured in wheel turns over the course of the test period, were vastly improved for 

AAV/Olig001-ASPA animals both in data collected over the entire 7 days and data collected 

only during the active nocturnal period of the daily cycle. ***p<0.001, n=10. (C) 

Representative actograms for AAV/Olig001-GFP (green) and AAV/Olig001-ASPA (red) 

showing increased daily activity levels. Mean +/− SEM presented with significant 

differences between groups determined by Two-tailed Student T-test.
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Figure 4. 
Rescue of myelination by AAV-Olig001-ASPA. MBP staining in 12 week old AAV-Olig001-

ASPA brains (C&D) revealed a drastic improvement in MBP density relative to controls 

(A&B). Differences in MBP density were especially stark in areas of the brain such as the 

thalamus (B&D) that are associated with intense vacuolation. MBP staining in AAV-

Olig001-ASPA brains was indistinguishable from age-matched wild type reference brains 

(E&F). MBP fiber density in the motor cortex of AAV-Olig001-ASPA brains was 

significantly higher than controls (G). Quantification of MBP fiber length density (MBP-

LD) by unbiased stereology (H) reveals rescue to wild type levels. MBP-LD expressed in 

μm/mm3 (volume of area sampled) with the mean for n=5 shown. ***p<0.001, NS= not 

significant. Significant differences between group means determined using Two-tailed 

Students T-test.
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Figure 5. 
Rescue of vacuolation by AAV-Olig-001-ASPA. Brains of 12 week old animals were serially 

processed for H&E staining. The thalamus of AAV-Olig001-ASPA nur7 brains (C) are 

indistinguishable from wild type reference brains (E), and contrast drastically with the 

intensely vacuolated AAV/Olig001-GFP thalamus (A). The density of thalamic H&E 

staining closely mirrors MBP staining (B, D, F). (G) Stereological estimates of thalamus 

vacuole volume fraction. The percentage of total thalamic volume occupied by vacuoles was 

calculated using an area fraction probe, revealing a complete rescue in AAV/Olig001-ASPA 

nur7 animals. Comparison of AAV-Olig001-ASPA nur7 vacuole fraction with age-matched 

wild type referencecontrols confirms vacuolation was essentially absent. ***p<0.001, n=5. 

Significant differences between group means (+/− SEM) determined using Two-tailed 

Student T-test
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Figure 6. 
Rescue of vacuolation in AAV/Olig001-ASPA nur7 brains is associated with increased 

oligodendrocyte content. Fluorescent immunolabeling of total nuclei (DAPI) and late-stage 

oligodendrocytes (CC1) in the medial septum (A) and thalamus (B) showing significant 

increases in CC1-positive cells in AAV/Olig001-ASPA brains relative to GFP controls. 

Stereological estimates of CC1-positive cell numbers in both the medial septum (MS; C) and 

thalamus (Thal; D) reveals the restoration of CC1 content to wild type levels. Counts of 

DAPI-positive nuclei in the severely vacuolated thalamus (E) in the same sections indicates 

deficiencies in cell numbers can be mainly accounted for by oligodendrocytes. ***p<0.001, 

**p<0.01. n=5/group, mean +/− sem shown. Significance determined by Two-tailed 

Student’s t-test.
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Figure 7. 
Long-term ASPA transgene expression in nur7 brain. 12-week old brains from AAV-

Olig001-ASPA nur7 (A&C) and AAV-Olig001-GFP nur7 (B&D) stained for ASPA (red) and 

counterstained with DAPI (blue). White matter tracts of the external capsule (Ext Cap) of 

AAV-Olig001-ASPA brains (A) label strongly with ASPA-positive fibers, with no staining 

present in white matter of AAV-Olig001-GFP brains (B). Outer layers of the motor cortex 

(Mtr Ctx) of AAV-Olig001-ASPA brains contained densely stained multi process-bearing 

cells (C), while ASPA staining in the motor cortex of AAV-Olig001-GFP was completely 

absent. Individual ASPA-positive cells in AAV-Olig001-ASPA brains (E) co-labeled with 

Olig2 (F, G), indicatingpersistent oligodendrocyte transgene expression. (H) HPLC 

performed on 12-week brains confirmed persistent functionality of transgene expression in 

the significant reduction in NAA in AAV/Oligo001-ASPA brains relative to controls. 

*p<0.05, n=4. Significant differences between group means determined using Two-tailed 

Student t-test.
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Figure 8. 
Chemical shift imaging of NAA and lactate in brains of severely affected (n=3; age 15–24 

months) and atypically mild (n=2, ages 5 years and 8 years) Canavan patients. Severely 

affected patients carried heterozygous compound mutations in the ASPA gene; mild patients 

were compound heterozygotes for R71H mutation. The same patients were imaged using 

both single voxel 1H-MRS for NAA and chemical shift imaging (CSI) for lactate 

quantification, per established protocol. There is a significant difference in mean values of 

lactate in white matter between the mild and severely affected Canavan patients (p<0.05, 

Student’s two-sample t-test with 3df) with increasing whole-brain NAA, suggesting that 

more severe Canavan disease favors anaerobic respiration in white matter and may be 

associated with metabolic stress.

Francis et al. Page 23

Neurobiol Dis. Author manuscript; available in PMC 2017 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript


	Abstract
	Introduction
	Results
	Targeted transduction of oligodendroglia in vivo with “oligotropic” AAV-Olig001
	Restoration of early energetic deficit
	Oligodendroglial ASPA reconstitution rescues motor deficit
	AAV-Olig001-ASPA promotes normal myelination and corrects vacuolation
	Human correlative data suggests metabolic stress in typical Canavan disease, with a benign pattern in mild Canavan disease

	Discussion
	Materials and Methods
	Cloning of functional ASPA and packaging into oligotropic AAV
	Animals
	Clinical Subjects
	HPLC
	Immunohistochemistry
	Stereology
	Analysis of motor function

	References
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Figure 5
	Figure 6
	Figure 7
	Figure 8

