236 research outputs found

    The Haematopoietic Stem Cell Niche: New Insights into the Mechanisms Regulating Haematopoietic Stem Cell Behaviour

    Get PDF
    The concept of the haematopoietic stem cell (HSC) niche was formulated by Schofield in the 1970s, as a region within the bone marrow containing functional cell types that can maintain HSC potency throughout life. Since then, ongoing research has identified numerous cell types and a plethora of signals that not only maintain HSCs, but also dictate their behaviour with respect to homeostatic requirements and exogenous stresses. It has been proposed that there are endosteal and vascular niches within the bone marrow, which are thought to regulate different HSC populations. However, recent data depicts a more complicated picture, with functional crosstalk between cells in these two regions. In this review, recent research into the endosteal/vascular cell types and signals regulating HSC behaviour are considered, together with the possibility of a single subcompartmentalised niche

    Data-Driven Thermal Anomaly Detection in Large Battery Packs

    Full text link
    The early detection and tracing of anomalous operations in battery packs are critical to improving performance and ensuring safety. This paper presents a data-driven approach for online anomaly detection in battery packs that uses real-time voltage and temperature data from multiple Li-ion battery cells. Mean-based residuals are generated for cell groups and evaluated using Principal Component Analysis. The evaluated residuals are then thresholded using a cumulative sum control chart to detect anomalies. The mild external short circuits associated with cell balancing are detected in the voltage signals and necessitate voltage retraining after balancing. Temperature residuals prove to be critical, enabling anomaly detection of module balancing events within 14 min that are unobservable from the voltage residuals. Statistical testing of the proposed approach is performed on the experimental data from a battery electric locomotive injected with model-based anomalies. The proposed anomaly detection approach has a low false-positive rate and accurately detects and traces the synthetic voltage and temperature anomalies. The performance of the proposed approach compared with direct thresholding of mean-based residuals shows a 56% faster detection time, 42% fewer false negatives, and 60% fewer missed anomalies while maintaining a comparable false-positive rate

    Malonate as a ROS product is associated with pyruvate carboxylase activity in Acute Myeloid Leukaemia cells

    Get PDF
    BACKGROUND: The role of anaplerotic nutrient entry into the Krebs cycle via pyruvate carboxylase has been the subject of increased scrutiny and in particular whether this is dysregulated in cancer. Here, we use a tracer-based NMR analysis involving high-resolution (1)H-(13)C-HSQC spectra to assess site-specific label incorporation into a range of metabolite pools, including malate, aspartate and glutamate in the acute myeloid leukaemia cell line K562. We also determine how this is affected following treatment with the redeployed drug combination of the lipid-regulating drug bezafibrate and medroxyprogesterone (BaP). RESULTS: Using the tracer-based approach, we assessed the contribution of pyruvate carboxylase (PC) vs. pyruvate dehydrogenase (PDH) activity in the derivation of Krebs cycle intermediates. Our data show that PC activity is indeed high in K562 cells. We also demonstrate a branched entry to the Krebs cycle of K562 cells with one branch running counterclockwise using PC-derived oxaloacetate and the other clockwise from the PDH activity. Finally, we show that the PC activity of K562 cells exclusively fuels the ROS-induced decarboxylation of oxaloacetate to malonate in response to BaP treatment; resulting in further Krebs cycle disruption via depletion of oxaloacetate and malonate-mediated inhibition of succinate dehydrogenase (SDH) resulting in a twofold reduction of fumarate. CONCLUSIONS: This study extends the interest in the PC activity in solid cancers to include leukaemias and further demonstrates the value of tracer-based NMR approaches in generating a more accurate picture of the flow of carbons and metabolites within the increasingly inappropriately named Krebs cycle. Moreover, our studies indicate that the PC activity in cancer cells can be exploited as an Achilles heel by using treatments, such as BaP, that elevate ROS production. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s40170-016-0155-7) contains supplementary material, which is available to authorized users

    The isomorphism problem for some universal operator algebras

    Full text link
    This paper addresses the isomorphism problem for the universal (nonself-adjoint) operator algebras generated by a row contraction subject to homogeneous polynomial relations. We find that two such algebras are isometrically isomorphic if and only if the defining polynomial relations are the same up to a unitary change of variables, and that this happens if and only if the associated subproduct systems are isomorphic. The proof makes use of the complex analytic structure of the character space, together with some recent results on subproduct systems. Restricting attention to commutative operator algebras defined by radical relations yields strong resemblances with classical algebraic geometry. These commutative operator algebras turn out to be algebras of analytic functions on algebraic varieties. We prove a projective Nullstellensatz connecting closed ideals and their zero sets. Under some technical assumptions, we find that two such algebras are isomorphic as algebras if and only if they are similar, and we obtain a clear geometrical picture of when this happens. This result is obtained with tools from algebraic geometry, reproducing kernel Hilbert spaces, and some new complex-geometric rigidity results of independent interest. The C*-envelopes of these algebras are also determined. The Banach-algebraic and the algebraic classification results are shown to hold for the weak-operator closures of these algebras as well.Comment: 46 pages. Final version, to appear in Advances in Mathematic

    Combined bezafibrate, medroxyprogesterone acetate and valproic acid treatment inhibits osteosarcoma cell growth without adversely affecting normal mesenchymal stem cells.

    Get PDF
    This document is the Accepted Manuscript version of a published work that appeared in final form in Bioscience Reports. To access the final edited and published work see http://dx.doi.org/10.1042/BSR20202505Drug repurposing is a cost effective means of targeting new therapies for cancer. We have examined the effects of the repurposed drugs, bezafibrate, medroxyprogesterone acetate and valproic acid on human osteosarcoma cells, i.e., SAOS2 and MG63 compared with their normal cell counterparts, i.e. mesenchymal stem/stromal cells (MSCs). Cell growth, viability and migration were measured by biochemical assay and live cell imaging, whilst levels of lipid-synthesising enzymes were measured by immunoblotting cell extracts. These drug treatments inhibited the growth and survival of SAOS2 and MG63 cells most effectively when used in combination (termed V-BAP). In contrast, V-BAP treated MSCs remained viable with only moderately reduced cell proliferation. V-BAP treatment also inhibited migratory cell phenotypes. MG63 and SAOS2 cells expressed much greater levels of fatty acid synthase and stearoyl CoA desaturase 1 than MSCs, but these elevated enzyme levels significantly decreased in the V-BAP treated osteosarcoma cells prior to cell death. Hence, we have identified a repurposed drug combination that selectively inhibits the growth and survival of human osteosarcoma cells in association with altered lipid metabolism without adversely affecting their non-transformed cell counterparts

    Tracer-based metabolic NMR-based flux analysis in a leukaemia cell line

    Get PDF
    High levels of reactive oxygen species (ROS) have a profound impact on acute myeloid leukaemia cells and can be used to specifically target these cells with novel therapies. We have previously shown how the combination of two redeployed drugs, the contraceptive steroid medroxyprogesterone and the lipid‐regulating drug bezafibrate exert anti‐leukaemic effects by producing ROS. Here we report a (13)C‐tracer‐based NMR metabolic study to understand how these drugs work in K562 leukaemia cells. Our study shows that [1,2‐(13)C]glucose is incorporated into ribose sugars, indicating activity in oxidative and non‐oxidative pentose phosphate pathways alongside lactate production. There is little label incorporation into the tricarboxylic acid cycle from glucose, but much greater incorporation arises from the use of [3‐(13)C]glutamine. The combined medroxyprogesterone and bezafibrate treatment decreases label incorporation from both glucose and glutamine into α‐ketoglutarate and increased that for succinate, which is consistent with ROS‐mediated conversion of α‐ketoglutarate to succinate. Most interestingly, this combined treatment drastically reduced the production of several pyrimidine synthesis intermediates

    Pathogen and human NDPK-proteins promote AML cell survival via monocyte NLRP3-inflammasome activation

    Get PDF
    A history of infection has been linked with increased risk of acute myeloid leukaemia (AML) and related myelodysplastic syndromes (MDS). Furthermore, AML and MDS patients suffer frequent infections because of disease-related impaired immunity. However, the role of infections in the development and progression of AML and MDS remains poorly understood. We and others previously demonstrated that the human nucleoside diphosphate kinase (NDPK) NM23-H1 protein promotes AML blast cell survival by inducing secretion of IL-1β from accessory cells. NDPKs are an evolutionary highly conserved protein family and pathogenic bacteria secrete NDPKs that regulate virulence and host-pathogen interactions. Here, we demonstrate the presence of IgM antibodies against a broad range of pathogen NDPKs and more selective IgG antibody activity against pathogen NDPKs in the blood of AML patients and normal donors, demonstrating that in vivo exposure to NDPKs likely occurs. We also show that pathogen derived NDPK-proteins faithfully mimic the catalytically independent pro-survival activity of NM23-H1 against primary AML cells. Flow cytometry identified that pathogen and human NDPKs selectively bind to monocytes in peripheral blood. We therefore used vitamin D3 differentiated monocytes from wild type and genetically modified THP1 cells as a model to demonstrate that NDPK-mediated IL-1β secretion by monocytes is NLRP3-inflammasome and caspase 1 dependent, but independent of TLR4 signaling. Monocyte stimulation by NDPKs also resulted in activation of NF-κB and IRF pathways but did not include the formation of pyroptosomes or result in pyroptotic cell death which are pivotal features of canonical NLRP3 inflammasome activation. In the context of the growing importance of the NLRP3 inflammasome and IL-1β in AML and MDS, our findings now implicate pathogen NDPKs in the pathogenesis of these diseases

    Metabolomic Profiling of Drug Responses in Acute Myeloid Leukaemia Cell Lines

    Get PDF
    Combined bezafibrate (BEZ) and medroxyprogesterone acetate (MPA) exert unexpected antileukaemic activities against acute myeloid leukaemia (AML) and these activities are associated with the generation of reactive oxygen species (ROS) within the tumor cells. Although the generation of ROS by these drugs is supported by preceding studies including our own, the interrelationship between the cellular effects of the drugs and ROS generation is not well understood. Here we report the use of NMR metabolomic profiling to further study the effect of BEZ and MPA on three AML cell lines and to shed light on the underlying mechanism of action. For this we focused on drug effects induced during the initial 24 hours of treatment prior to the onset of overt cellular responses and examined these in the context of basal differences in metabolic profiles between the cell lines. Despite their ultimately profound cellular effects, the early changes in metabolic profiles engendered by these drugs were less pronounced than the constitutive metabolic differences between cell types. Nonetheless, drug treatments engendered common metabolic changes, most markedly in the response to the combination of BEZ and MPA. These responses included changes to TCA cycle intermediates consistent with recently identified chemical actions of ROS. Notable amongst these was the conversion of α-ketoglutarate to succinate which was recapitulated by the treatment of cell extracts with exogenous hydrogen peroxide. These findings indicate that the actions of combined BEZ and MPA against AML cells are indeed mediated downstream of the generation of ROS rather than some hitherto unsuspected mechanism. Moreover, our findings demonstrate that metabolite profiles represent highly sensitive markers for genomic differences between cells and their responses to external stimuli. This opens new perspectives to use metabolic profiling as a tool to study the rational redeployment of drugs in new disease settings
    corecore