33 research outputs found

    Special topic: The association between pulse ingredients and canine dilated cardiomyopathy: addressing the knowledge gaps before establishing causation.

    Get PDF
    In July 2018, the Food and Drug Administration warned about a possible relationship between dilated cardiomyopathy (DCM) in dogs and the consumption of dog food formulated with potatoes and pulse ingredients. This issue may impede utilization of pulse ingredients in dog food or consideration of alternative proteins. Pulse ingredients have been used in the pet food industry for over 2 decades and represent a valuable source of protein to compliment animal-based ingredients. Moreover, individual ingredients used in commercial foods do not represent the final nutrient concentration of the complete diet. Thus, nutritionists formulating dog food must balance complementary ingredients to fulfill the animal's nutrient needs in the final diet. There are multiple factors that should be considered, including differences in nutrient digestibility and overall bioavailability, the fermentability and quantity of fiber, and interactions among food constituents that can increase the risk of DCM development. Taurine is a dispensable amino acid that has been linked to DCM in dogs. As such, adequate supply of taurine and/or precursors for taurine synthesis plays an important role in preventing DCM. However, requirements of amino acids in dogs are not well investigated and are presented in total dietary content basis which does not account for bioavailability or digestibility. Similarly, any nutrient (e.g., soluble and fermentable fiber) or physiological condition (e.g., size of the dog, sex, and age) that increases the requirement for taurine will also augment the possibility for DCM development. Dog food formulators should have a deep knowledge of processing methodologies and nutrient interactions beyond meeting the Association of American Feed Control Officials nutrient profiles and should not carelessly follow unsubstantiated market trends. Vegetable ingredients, including pulses, are nutritious and can be used in combination with complementary ingredients to meet the nutritional needs of the dog

    Bilirubin as a Therapeutic Molecule: Challenges and Opportunities

    No full text
    There is strong evidence that serum free bilirubin concentration has significant effects on morbidity and mortality in the most significant health conditions of our times, including cardiovascular disease, diabetes, and obesity/metabolic syndrome. Supplementation of bilirubin in animal and experimental models has reproduced these protective effects, but several factors have slowed the application bilirubin as a therapeutic agent in human patients. Bilirubin is poorly soluble in water, and is a complex molecule that is difficult to synthesize. Current sources of this molecule are animal-derived, creating concerns regarding the risk of virus or prion transmission. However, recent developments in nanoparticle drug delivery, biosynthetic strategies, and drug synthesis have opened new avenues for applying bilirubin as a pharmaceutical agent. This article reviews the chemistry and physiology of bilirubin, potential clinical applications and summarizes current strategies for safe and efficient drug delivery

    Isolation of feline islets of Langerhans by selective osmotic shock produces glucose responsive islets

    No full text
    IntroductionPancreatic islet isolation is essential for studying islet physiology, pathology, and transplantation, and feline islets could be an important model for human type II diabetes mellitus (T2D). Traditional isolation methods utilizing collagenases inflict damage and, in cats, may contribute to the difficulty in generating functional islets, as demonstrated by glucose-stimulated insulin secretion (GSIS). GLUT2 expression in β cells may allow for adaptation to hyperosmolar glucose solutions while exocrine tissue is selectively disrupted.MethodsHere we developed a protocol for selective osmotic shock (SOS) for feline islet isolation and evaluated the effect of different hyperosmolar glucose concentrations (300 mmol/L and 600 mmol/L) and incubation times (20 min and 40 min) on purity, morphology, yield, and GSIS.ResultsAcross protocol treatments, islet yield was moderate and morphology excellent. The treatment of 600 mmol/L glucose solution with 20 min incubation resulted in the highest stimulation index by GSIS.DiscussionGlucose responsiveness was demonstrated, permitting future in vitro studies. This research opens avenues for understanding feline islet function and transplantation possibilities and enables an additional islet model for T2D

    Physiologic Doses of Bilirubin Contribute to Tolerance of Islet Transplants by Suppressing the Innate Immune Response

    No full text
    Bilirubin has been recognized as a powerful cytoprotectant when used at physiologic doses and was recently shown to have immunomodulatory effects in islet allograft transplantation, conveying donor-specific tolerance in a murine model. We hypothesized that bilirubin, an antioxidant, acts to suppress the innate immune response to islet allografts through two mechanisms: 1) by suppressing graft release of damage-associated molecular patterns (DAMPs) and inflammatory cytokines, and 2) by producing a tolerogenic phenotype in antigen-presenting cells. Bilirubin was administered intraperitoneally before pancreatic procurement or was added to culture media after islet isolation in AJ mice. Islets were exposed to transplant-associated nutrient deprivation and hypoxia. Bilirubin significantly decreased islet cell death after isolation and hypoxic stress. Bilirubin supplementation of islet media also decreased the release of DAMPs (HMGB1), inflammatory cytokines (IL-1β and IL-6), and chemokines (MCP-1). Cytoprotection was mediated by the antioxidant effects of bilirubin. Treatment of macrophages with bilirubin induced a regulatory phenotype, with increased expression of PD-L1. Coculture of these macrophages with splenocytes led to expansion of Foxp3+ Tregs. In conclusion, exogenous bilirubin supplementation showed cytoprotective and antioxidant effects in a relevant model of islet isolation and hypoxic stress. Suppression of DAMP release, alterations in cytokine profiles, and tolerogenic effects on macrophages suggest that the use of this natural antioxidant may provide a method of preconditioning to improve outcomes after allograft transplantation

    Embryonic Stem Cells Proliferate and Differentiate when Seeded into Kidney Scaffolds

    No full text
    The scarcity of transplant allografts for diseased organs has prompted efforts at tissue regeneration using seeded scaffolds, an approach hampered by the enormity of cell types and complex architectures. Our goal was to decellularize intact organs in a manner that retained the matrix signal for differentiating pluripotent cells. We decellularized intact rat kidneys in a manner that preserved the intricate architecture and seeded them with pluripotent murine embryonic stem cells antegrade through the artery or retrograde through the ureter. Primitive precursor cells populated and proliferated within the glomerular, vascular, and tubular structures. Cells lost their embryonic appearance and expressed immunohistochemical markers for differentiation. Cells not in contact with the basement membrane matrix became apoptotic, thereby forming lumens. These observations suggest that the extracellular matrix can direct regeneration of the kidney, and studies using seeded scaffolds may help define differentiation pathways
    corecore