374 research outputs found

    New findings on the d(TGGGAG) sequence: Surprising anti-HIV-1 activity

    Get PDF
    The biological relevance of tetramolecular G-quadruplexes especially as anti-HIV agents has been extensively reported in the literature over the last years. In the light of our recent results regarding the slow G-quadruplex folding kinetics of ODNs based on d(TGGGAG) sequence, here, we report a systematic anti-HIV screening to investigate the impact of the G-quadruplex folding on their anti-HIV activity. In particular, varying the single stranded concentrations of ODNs, it has been tested a pool of ODN sample solutions with different G-quadruplex concentrations. The anti-HIV assays have been designed favouring the limited kinetics involved in the tetramolecular G4-association based on the d(TGGGAG) sequence. Aiming to determine the stoichiometry of G-quadruplex structures in the same experimental conditions of the anti-HIV assays, a native gel electrophoresis was performed. The gel confirmed the G-quadruplex formation for almost all sample solutions while showing the formation of high order G4 structures for the more concentrated ODNs solutions. The most significant result is the discovery of a potent anti-HIV activity of the G-quadruplex formed by the natural d(TGGGAG) sequence (IC50 = 14 nM) that, until now, has been reported to be completely inactive against HIV infection

    Isothiazole derivatives as antiviral agents

    Get PDF
    We recently described the synthesis and antiviral activity of the compounds 5-phenyl-3-(4-cyano-5-phenylisothiazol-3-yl) disulphanyl-4-isothiazole-carbonitrile and S-(4-cyano-5-phenylisothiazol-3-yl)- O-ethyl thiocarbonate, which were found to be effective against both HIV-1 (IIIB) and HIV-2 (ROD). We have now evaluated these compounds against both RNA and DNA viruses, obtaining high selectivity indexes for poliovirus 1 (SI: 223 and 828, respectively) and Echovirus 9 (SI: 334 and 200, respectively). In our previous studies, 3-methylthio-5-(4- OBn-phenyl)-4-isothiazolecarbo-nitrile was found to exhibit a broad spectrum of action against picornaviruses, we therefore selected this compound and S-(4-cyano-5-phenylisothiazol-3-yl)- O-ethyl thiocarbonate as the model for the synthesis of a new isothiazole derivative, S-[4-cyano-5-(4- OBn-phenyl)isothiazol-3-yl]- O-ethyl thiocarbonate. This compound was evaluated against picornaviruses, measles virus, HIV-1 (IIIB) and HIV-2 (ROD), and some DNA viruses (adenovirus type 2 and herpes simplex virus type 1). The compound was shown to be active against rhinoviruses 2, 39, 86 and 89, Coxsackie B1 and measles virus

    Chelation motifs affecting metal-dependent viral enzymes: Nâ€Č-acylhydrazone ligands as dual target inhibitors of HIV-1 Integrase and Reverse Transcriptase Ribonuclease H domain

    Get PDF
    Human immunodeficiency virus type 1 (HIV-1) infection, still represent a serious global health emergency. The chronic toxicity derived from the current anti-retroviral therapy limits the prolonged use of several antiretroviral agents, continuously requiring the discovery of new antiviral agents with innovative strategies of action. In particular, the development of single molecules targeting two proteins (dual inhibitors) is one of the current main goals in drug discovery. In this contest, metal-chelating molecules have been extensively explored as potential inhibitors of viral metal-dependent enzymes, resulting in some important classes of antiviral agents. Inhibition of HIV Integrase (IN) is, in this sense, paradigmatic. HIV-1 IN and Reverse Transcriptase-associated Ribonuclease H (RNase H) active sites show structural homologies, with the presence of two Mg(II) cofactors, hence it seems possible to inhibit both enzymes by means of chelating ligands with analogous structural features. Here we present a series of Nâ€Č-acylhydrazone ligands with groups able to chelate the Mg(II) hard Lewis acid ions in the active sites of both the enzymes, resulting in dual inhibitors with micromolar and even nanomolar activities. The most interesting identified Nâ€Č-acylhydrazone analog, compound 18, shows dual RNase H-IN inhibition and it is also able to inhibit viral replication in cell-based antiviral assays in the low micromolar range. Computational modeling studies were also conducted to explore the binding attitudes of some model ligands within the active site of both the enzymes

    Polyfluoroaromatic stavudine (d4T) ProTides exhibit enhanced anti-HIV activity

    Get PDF
    Human Immunodeficiency Virus (HIV) damages the immune system and leads to the life-threatening acquired immunodeficiency syndrome (AIDS). Despite the advances in the field of antiretroviral treatment, HIV remains a major public health challenge. Nucleosides represent a prominent chemotherapeutic class for treating viruses, however their cellular uptake, kinase-mediated activation and catabolism are limiting factors. Herein, we report the synthesis and in vitro evaluation of stavudine (d4T) ProTides containing polyfluorinated aryl groups against two strains; HIV-1 (IIIB) and HIV-2 (ROD). ProTide 5d containing a meta-substituted pentafluorosulfanyl (3-SF5) aryl group showed superior antiviral activity over the parent d4T and the nonfluorinated analogue 5a. ProTide 5d has low nanomolar antiviral activity; (IC50 = 30 nM, HIV-1) and (IC50 = 36 nM, HIV-2) which is over tenfold more potent than d4T. Interestingly, ProTide 5d showed a significantly high selectivity indices with SI = 1753 (HIV-1) and 1461 (HIV-2) which is more than twice that of the d4T. All ProTides were screened in wild type as well as thymidine kinase deficient (TK−) cells. Enzymatic activation of ProTide 5d using carboxypeptidase Y enzyme and monitored using both 31P and 19F NMR is presented

    Artemisinin analogues as potent inhibitors of in vitro hepatitis C virus replication

    Get PDF
    We reported previously that Artemisinin (ART), a widely used anti-malarial drug, is an inhibitor of in vitro HCV subgenomic replicon replication. We here demonstrate that ART exerts its antiviral activity also in hepatoma cells infected with full length infectious HCV JFH-1. We identified a number of ART analogues that are up to 10-fold more potent and selective as in vitro inhibitors of HCV replication than ART. The iron donor Hemin only marginally potentiates the anti-HCV activity of ART in HCV-infected cultures. Carbon-centered radicals have been shown to be critical for the anti-malarial activity of ART. We demonstrate that carbon-centered radicals-trapping (the so-called TEMPO) compounds only marginally affect the anti-HCV activity of ART. This provides evidence that carbon-centered radicals are not the main effectors of the anti-HCV activity of the Artemisinin. ART and analogues may possibly exert their anti-HCV activity by the induction of reactive oxygen species (ROS). The combined anti-HCV activity of ART or its analogues with L-N-Acetylcysteine (L-NAC) [a molecule that inhibits ROS generation] was studied. L-NAC significantly reduced the in vitro anti-HCV activity of ART and derivatives. Taken together, the in vitro anti-HCV activity of ART and analogues can, at least in part, be explained by the induction of ROS; carbon-centered radicals may not be important in the anti-HCV effect of these molecules

    1,2,4-Triazolo[1,5-a]pyrimidines as a Novel Class of Inhibitors of the HIV-1 Reverse Transcriptase-Associated Ribonuclease H Activity

    Get PDF
    Despite great efforts have been made in the prevention and therapy of human immunodeficiency virus (HIV-1) infection, however the difficulty to eradicate latent viral reservoirs together with the emergence of multi-drug-resistant strains require the search for innovative agents, possibly exploiting novel mechanisms of action. In this context, the HIV-1 reverse transcriptase (RT)-associated ribonuclease H (RNase H), which is one of the few HIV-1 encoded enzymatic function still not targeted by any current drug, can be considered as an appealing target. In this work, we repurposed in-house anti-influenza derivatives based on the 1,2,4-triazolo[1,5-a]-pyrimidine (TZP) scaffold for their ability to inhibit HIV-1 RNase H function. Based on the results, a successive multi-step structural exploration around the TZP core was performed leading to identify catechol derivatives that inhibited RNase H in the low micromolar range without showing RT-associated polymerase inhibitory activity. The antiviral evaluation of the compounds in the MT4 cells showed any activity against HIV-1 (IIIB strain). Molecular modelling and mutagenesis analysis suggested key interactions with an unexplored allosteric site providing insights for the future optimization of this class of RNase H inhibitors

    Synthesis, biological activity, pharmacokinetic properties and molecular modelling studies of novel 1H,3H-oxazolo[3,4-a]benzimidazoles: non-nucleoside HIV-1 reverse transcriptase inhibitors

    Get PDF
    New 1H,3H-oxazolo[3,4-a]benzimidazoles (OBZs) were synthesized as HIV-1 non-nucleoside reverse transcriptase inhibitors (NNRTI) to extend the structure-activity relationships observed for an early series of related 1H,3H-thiazolo[3,4-a]benzimidazole derivatives (TBZs). The new compounds showed inhibitory activity against the replication of various HIV-1 strains, including NNRTI-resistant strains. Testing of a representative OBZ derivative in an HPLC assay on biological fluids, indicated that the sulphur substitution appreciably improved the metabolic stability of the TBZ compound. In addition, molecular modelling studies demonstrated that OBZs, TBZs and other NNRTIs have similar structural properties, that is a butterfly-like conformation, which is a key structural requirement for reverse transcriptase inhibition

    Skepticism and Euroskepticism in British Politics

    Get PDF
    This article provides an analysis of the variants of Euroskepticism voiced in the British political discourse on furthering integration of the United Kingdom with Europe

    Nitroimidazoli. V. Sinteza i anti-HIV djelovanje novih 5-supstituiranih piperazinil-4-nitroimidazol derivata

    Get PDF
    A series of 2-alkylthio-1-[4-(1-benzyl-2-ethyl-4-nitro-1H-imidazol-5-yl)-piperazin-1-yl]ethanones (3-9) and alkyl-[4-(1-benzyl-2-ethyl-4-nitro-1H-imidazol-5-yl)-piperazin-1-yl)ketones (11-20) as well as the indole analogue 22 were synthesized from 4-nitro-5-piperazinyl imidazole derivative 1, with the aim to develop new non-nucleoside reverse transcriptase inhibitors (NNRTIs). The newly synthesized compounds were assayed against HIV-1 and HIV-2 in MT-4 cells. Compound 4 showed inhibition of HIV-1 (EC50 0.45 ”g mL1) and HIV-2 (0.50 ”g mL1), while 11 showed inhibition of HIV-1 (EC50 2.48 ”g mL1, SI = 4).Iz 4-nitro-5-piperazinil derivata imidazola 1 sintetizirana je serija 2-alkiltio-1-[4-(1-benzil-2-etil-4-nitro-1H-imidazol-5-il)-piperazin-1-il]etanona (3-9) i alkil-[4-(1-benzil-2-etil-4-nitro-1H-imidazol-5-il)-piperazin-1-il)ketona (11-20) te indol analog 22, s ciljem da se razviju novi nenukleozidni inhibitori reverzne transkriptaze (NNRTIs). Novosintetiziranim spojevima ispitano je djelovanje na HIV-1 i HIV-2 u MT-4 stanicama. Spoj 4 pokazao je značajno djelovanje na HIV-1 (EC50 0,45 ”g mL1) i HIV-2 (0,50 ”g m-1), a spoj 11 na HIV-1 (EC50 2.48 ”g mL-1, SI = 4)
    • 

    corecore