120 research outputs found

    The merging cluster of galaxies Abell 3376: an optical view

    Full text link
    Abell 3376 is a merging cluster of galaxies at redshift z=0.046, famous mostly for its giant radio arcs, and shows an elongated and highly substructured X-ray emission, but has not been analysed in detail at optical wavelengths. We have obtained wide field images of Abell 3376 in the B band and derive the GLF applying a statistical subtraction of the background in three regions: a circle of 0.29 deg radius (1.5 Mpc) encompassing the whole cluster, and two circles centered on each of the two brightest galaxies (BCG2, northeast, coinciding with the peak of X-ray emission, and BCG1, southwest) of radii 0.15 deg (0.775 Mpc). We also compute the GLF in the zone around BCG1, which is covered by the WINGS survey in the B and V bands, by selecting cluster members in the red sequence in a (B-V) versus V diagram. Finally, we discuss the dynamical characteristics of the cluster implied by a Serna & Gerbal analysis. The GLFs are not well fit by a single Schechter function, but satisfactory fits are obtained by summing a Gaussian and a Schechter function. The GLF computed by selecting galaxies in the red sequence in the region surrounding BCG1 can also be fit by a Gaussian plus a Schechter function. An excess of galaxies in the brightest bins is detected in the BCG1 and BCG2 regions. The dynamical analysis based on the Serna & Gerbal method shows the existence of a main structure of 82 galaxies which can be subdivided into two main substructures of 25 and 6 galaxies. A smaller structure of 6 galaxies is also detected. The B band GLFs of Abell 3376 are clearly perturbed, as already found in other merging clusters. The dynamical properties are consistent with the existence of several substructures, in agreement with a previously published X-ray analysis.Comment: 11 pages, 12 figures, accepted for publication in A&

    Weak lensing study of 16 DAFT/FADA clusters: substructures and filaments

    Full text link
    While our current cosmological model places galaxy clusters at the nodes of a filament network (the cosmic web), we still struggle to detect these filaments at high redshifts. We perform a weak lensing study for a sample of 16 massive, medium-high redshift (0.4<z<0.9) galaxy clusters from the DAFT/FADA survey, that are imaged in at least three optical bands with Subaru/Suprime-Cam or CFHT/MegaCam. We estimate the cluster masses using an NFW fit to the shear profile measured in a KSB-like method, adding our contribution to the calibration of the observable-mass relation required for cluster abundance cosmological studies. We compute convergence maps and select structures within, securing their detection with noise re-sampling techniques. Taking advantage of the large field of view of our data, we study cluster environment, adding information from galaxy density maps at the cluster redshift and from X-ray images when available. We find that clusters show a large variety of weak lensing maps at large scales and that they may all be embedded in filamentary structures at megaparsec scale. We classify them in three categories according to the smoothness of their weak lensing contours and to the amount of substructures: relaxed (~7%), past mergers (~21.5%), recent or present mergers (~71.5%). The fraction of clusters undergoing merging events observationally supports the hierarchical scenario of cluster growth, and implies that massive clusters are strongly evolving at the studied redshifts. Finally, we report the detection of unusually elongated structures in CLJ0152, MACSJ0454, MACSJ0717, A851, BMW1226, MACSJ1621, and MS1621.Comment: 25 pages, accepted for publication in A&

    Deep Spectroscopy of the MV14.8M_V\sim -14.8 Host Galaxy of a Tidal Disruption Flare in A1795

    Full text link
    A likely tidal disruption of a star by the intermediate-mass black hole (IMBH) of a dwarf galaxy was recently identified in association with Abell 1795. Without deep spectroscopy for this very faint object, however, the possibility of a more massive background galaxy or even a disk-instability flare from a weak AGN could not be dismissed. We have now obtained 8 hours of Gemini spectroscopy which unambiguously demonstrate that the host galaxy is indeed an extremely low-mass (M3×108  M)(M_\ast\sim 3\times 10^8\; {\rm M}_{\odot}) galaxy in Abell 1795, comparable to the least-massive galaxies determined to host IMBHs via other studies. We find that the spectrum is consistent with the X-ray flare being due to a tidal disruption event rather than an AGN flare. We also set improved limits on the black hole mass (log[M/M]5.35.7)({\rm log}[M_{\bullet}/{\rm M}_{\odot}] \sim 5.3 - 5.7) and infer a 15-year X-ray variability of a factor of >104> 10^4. The confirmation of this galaxy-black hole system provides a glimpse into a population of galaxies that is otherwise difficult to study, due to the galaxies' low masses and intrinsic faintness, but which may be important contributors to the tidal disruption rate.Comment: 9 pages, 4 figures. Accepted by MNRA

    A weak lensing study of the Coma cluster

    Full text link
    Due to observational constraints, dark matter determinations in nearby clusters based on weak lensing are still extremely rare, in spite of their importance for the determination of cluster properties independent of other methods. We present a weak lensing study of the Coma cluster (redshift 0.024) based on deep images obtained at the CFHT. After obtaining photometric redshifts for the galaxies in our field based on deep images in the u (1x1 deg2), and in the B, V, R and I bands (42'x52'), allowing us to eliminate foreground galaxies, we apply weak lensing calculations on shape measurements performed in the u image. We derive a map of the mass distribution in Coma, as well as the radial shear profile, and the mass and concentration parameter at various radii. We obtain M_200c = 5.1+4.3-2.1 x10^14 Msun and c_200c=5.0+3.2-2.5, in good agreement with previous measurements. With deep wide field images it is now possible to analyze nearby clusters with weak lensing techniques, thus opening a broad new field of investigation

    The XXL Survey V: Detection of the Sunyaev-Zel'dovich effect of the Redshift 1.9 Galaxy Cluster XLSSU J021744.1-034536 with CARMA

    Get PDF
    We report the detection of the Sunyaev-Zel'dovich (SZ) effect of galaxy cluster XLSSU J021744.1-034536, using 30 GHz CARMA data. This cluster was discovered via its extended X-ray emission in the XMM-Newton Large Scale Structure survey, the precursor to the XXL survey. It has a photometrically determined redshift z=1.910.21+0.19z=1.91^{+0.19}_{-0.21}, making it among the most distant clusters known, and nominally the most distant for which the SZ effect has been measured. The spherically integrated Comptonization is Y500=(3.0±0.4)×1012Y_{500}=(3.0\pm0.4)\times 10^{-12}, a measurement which is relatively insensitive to assumptions regarding the size and redshift of the cluster, as well as the background cosmology. Using a variety of locally calibrated cluster scaling relations extrapolated to z~2, we estimate a mass M500(1M_{500} \sim (1-2)×1014Msun2)\times 10^{14}M_{sun} from the X-ray flux and SZ signal. The measured properties of this cluster are in good agreement with the extrapolation of an X-ray luminosity-SZ effect scaling relation calibrated from clusters discovered by the South Pole Telescope at higher masses and lower redshifts. The full XXL-CARMA sample will provide a more complete, multi-wavelength census of distant clusters in order to robustly extend the calibration of cluster scaling relations to these high redshifts.Comment: ApJ, in press. 9 pages, 4 figures, 4 table

    The XMM-LSS survey. Survey design and first results

    Full text link
    We have designed a medium deep large area X-ray survey with XMM - the XMM Large Scale Structure survey, XMM-LSS - with the scope of extending the cosmological tests attempted using ROSAT cluster samples to two redshift bins between 0<z<1 while maintaining the precision of earlier studies. Two main goals have constrained the survey design: the evolutionary study of the cluster-cluster correlation function and of the cluster number density. The results are promising and, so far, in accordance with our predictions as to the survey sensitivity and cluster number density. The feasibility of the programme is demonstrated and further X-ray coverage is awaited in order to proceed with a truly significant statistical analysis. (Abridged)Comment: Published in Journal of Cosmology and Astroparticle Physic

    The galaxy luminosity function in the cluster of galaxies Abell 496

    Full text link
    We have derived the galaxy luminosity function (GLF) in the cluster of galaxies Abell 496 from a wide field image in the I band. A single Schechter function reproduces quite well the GLF in the 17 <= I_{AB} <= 22 (-19.5 <= M_I <= -14.5) magnitude interval, and the power law index of this function is found to be somewhat steeper in the outer regions than in the inner regions. This result agrees with the idea that faint galaxies are more abundant in the outer regions of clusters, while in the denser inner regions they have partly been accreted by larger galaxies or have been dimmed or even disrupted by tidal interactions.Comment: Accepted for publication in Astronomy & Astrophysics, final versio

    The cosmological analysis of X-ray cluster surveys: II- Application of the CR-HR method to the XMM archive

    Full text link
    We have processed 2774 high-galactic observations from the XMM archive (as of May 2010) and extracted a serendipitous catalogue of some 850 clusters of galaxies based on purely X-ray criteria, following the methodology developed for the XMM-LSS survey. Restricting the sample to the highest signal-to-noise objects (347 clusters), we perform a cosmological analysis using the X-ray information only. The analysis consists in the modelling of the observed colour-magnitude (CR-HR) diagram constructed from cluster instrumental count-rates measured in the [0.5-2], [1-2] and [0.5-1] keV bands. A MCMC procedure simultaneously fits the cosmological parameters, the evolution of the cluster scaling laws and the selection effects. Our results are consistent with the sigma_8 and Omega_m values obtained by WMAP-5 and point toward a negative evolution of the cluster scaling relations with respect to the self-similar expectation. We are further able to constrain the cluster fractional radius xc0=r_c/r500c, to xc0=0.24 +/- 0.04. This study stresses again the critical role of selection effects in deriving cluster scaling relations, even in the local universe. Finally, we show that CR-HR method applied to the eRosita all-sky survey - provided that cluster photometric redshifts are available - will enable the determination of the equation of state of the dark energy at the level of the DETF stage IV predictions; simultaneously, the evolution of the cluster scaling-relations will be unambiguously determined. The XMM CLuster Archive Super Survey (XCLASS) serendipitous cluster catalogue is available online at: http://xmm-lss.in2p3.fr:8080/l4sdb/.Comment: 26 pages, 24 figures, 9 tables. Accepted for publication in MNRAS (minor changes with respect to submitted version). The corresponding galaxy cluster catalogue is available at http://xmm-lss.in2p3.fr:8080/l4sdb

    The evolution of the cluster optical galaxy luminosity function between z=0.4 and 0.9 in the DAFT/FADA survey

    Get PDF
    We compute optical galaxy luminosity functions (GLFs) in the B, V, R, and I rest-frame bands for one of the largest medium-to-high-redshift (0.4 < z < 0.9) cluster samples to date in order to probe the abundance of faint galaxies in clusters. We also study how the GLFs depend on cluster redshift, mass, and substructure, and compare the GLFs of clusters with those of the field. We separately investigate the GLFs of blue and red-sequence (RS) galaxies to understand the evolution of different cluster populations. We find that the shapes of our GLFs are similar for the B, V, R, and I bands with a drop at the red GLF faint end that is more pronounced at high-redshift: alpha(red) ~ -0.5 at 0.40 0.1 at 0.65 < z < 0.90. The blue GLFs have a steeper faint end (alpha(blue) ~ -1.6) than the red GLFs, that appears to be independent of redshift. For the full cluster sample, blue and red GLFs intersect at M(V) = -20, M(R) = -20.5, and M(I) = -20.3. A study of how galaxy types evolve with redshift shows that late type galaxies appear to become early types between z ~ 0.9 and today. Finally, the faint ends of the red GLFs of more massive clusters appear to be richer than less massive clusters, which is more typical of the lower redshift behaviour. Our results indicate that our clusters form at redshifts higher than z = 0.9 from galaxy structures that already have an established red sequence. Late type galaxies then appear to evolve into early types, enriching the red-sequence between this redshift and today. This effect is consistent with the evolution of the faint end slope of the red-sequence and the galaxy type evolution that we find. Finally, faint galaxies accreted from the field environment at all redshifts might have replaced the blue late type galaxies that converted into early types, explaining the lack of evolution in the faint end slopes of the blue GLFs.Comment: accepted for publication in A&

    The evolution of the cluster optical galaxy luminosity function between z = 0.4 and 0.9 in the DAFT/FADA survey

    Get PDF
    Context. There is some disagreement about the abundance of faint galaxies in high-redshift clusters, with contradictory results in the literature arising from studies of the optical galaxy luminosity function (GLF) for small cluster samples. Aims. We compute GLFs for one of the largest medium-to-high-redshift (0.4 ≤ z 0.1 at 0.65 ≤ z < 0.90. The blue GLFs have a steeper faint end (αblue ∼ -1.6) than the red GLFs, which appears to be independent of redshift. For the full cluster sample, blue and red GLFs meet at MV = -20, MR = -20.5, and MI = -20.3. A study of how galaxy types evolve with redshift shows that late-type galaxies appear to become early types between z ∼ 0.9 and today. Finally, the faint ends of the red GLFs of more massive clusters appear to be richer than less massive clusters, which is more typical of the lower redshift behaviour. Conclusions. Our results indicate that these clusters form at redshifts higher than z = 0.9 from galaxy structures that already have an established red sequence. Late-type galaxies then appear to evolve into early types, enriching the red sequence between this redshift and today. This effect is consistent with the evolution of the faint-end slope of the red sequence and the galaxy type evolution that we find. Finally, faint galaxies accreted from the field environment at all redshifts might have replaced the blue late-type galaxies that converted into early types, explaining the lack of evolution in the faint-end slopes of the blue GLFs. © ESO 2015.We thank Greg Rudnick for useful discussions. We also thank Eric Jullo, Marceau Limousin, Dennis Zaritsky for comments on earlier versions of this paper. We are grateful to the referee for interesting comments. F.D. acknowledges long-term financial support from CNES. I.M. acknowledges financial support from the Spanish grant AYA2010-15169 and from the Junta de Andalucia through TIC-114 and the Excellence Project P08-TIC-03531. Based on observations made with the FORS2 multi-object spectrograph mounted on the Antu VLT telescope at ESO-Paranal Observatory (programme 085.A-0016, 089A-0666, 191.A-0268; PI: C. Adami). Also based on observations made with the Italian Telescopio Nazionale Galileo (TNG) operated on the island of La Palma by the Fundación Galileo Galilei of the INAF (Istituto Nazionale di Astrofisica) at the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofísica de Canarias. Based on observations obtained with MegaPrime/MegaCam, a joint project of CFHT and CEA/IRFU, at the Canada-France-Hawaii Telescope (CFHT) which is operated by the National Research Council (NRC) of Canada, the Institut National des Science de l’Univers of the Centre National de la Recherche Scientifique (CNRS) of France, and the University of Hawaii. This work is based in part on data products produced at Terapix available at the Canadian Astronomy Data Centre as part of the Canada-France-Hawaii Telescope Legacy Survey, a collaborative project of NRC and CNRS. Also based on observations obtained at the WIYN telescope (KNPO). The WIYN Observatory is a joint facility of the University of Wisconsin-Madison, Indiana University, Yale University, and the National Optical Astronomy Observatory. Kitt Peak National Observatory, National Optical Astronomy Observatory. It is operated by the Association of Universities for Research in Astronomy (AURA) under cooperative agreement with the National Science Foundation. Also based on observations obtained at the MDM observatory (2.4 m telescope). MDM consortium partners are Columbia University Department of Astronomy and Astrophysics, Dartmouth College Department of Physics and Astronomy, University of Michigan Astronomy Department, The Ohio State University Astronomy Department, and the Ohio University Dept. of Physics and Astronomy. Also based on observations obtained at the Southern Astrophysical Research (SOAR) telescope, which is a joint project of the Ministério da Ciência, Tecnologia, e Inovação (MCTI) da República Federativa do Brasil, the US National Optical Astronomy Observatory (NOAO), the University of North Carolina at Chapel Hill (UNC), and Michigan State University (MSU). Also based on observations obtained at the Cerro Tololo Inter-American Observatory, National Optical Astronomy Observatory, which are operated by the Association of Universities for Research in Astronomy, under contract with the National Science Foundation. Also based on observations made with the Gran Telescopio Canarias (GTC), installed at the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofísica de Canarias, on the island of La Palma. Also based on archive data collected at the Subaru Telescope, which is operated by the National Astronomical Observatory of Japan. Finally, this research has made use of the VizieR catalogue access tool at the CDS, Strasbourg, France
    corecore