15 research outputs found

    Ontology modelling for materials science experiments

    Get PDF
    Materials are either enabler or bottleneck for the vast majority of technological innovations. The digitization of materials and processes is mandatory to create live production environments which represent physical entities and their aggregations and thus allow to represent, share, and understand materials changes. However, a common standard formalization for materials knowledge in the form of taxonomies, ontologies, or knowledge graphs has not been achieved yet. This paper sketches the efforts in modelling an ontology prototype to describe Materials Science experiments. It describes what is expected from the ontology by introducing a use case where a process chain driven by the ontology enables the curation and understanding of experiments

    Ontology modelling for materials science experiments

    Get PDF
    Materials are either enabler or bottleneck for the vast majority of technological innovations. The digitization of materials and processes is mandatory to create live production environments which represent physical entities and their aggregations and thus allow to represent, share, and understand materials changes. However, a common standard formalization for materials knowledge in the form of taxonomies, ontologies, or knowledge graphs has not been achieved yet. This paper sketches the efforts in modelling an ontology prototype to describe Materials Science experiments. It describes what is expected from the ontology by introducing a use case where a process chain driven by the ontology enables the curation and understanding of experiments

    From Ideas to Practice, Pilots to Strategy: Practical Solutions and Actionable Insights on How to Do Impact Investing

    Get PDF
    This report is the second publication in the World Economic Forum's Mainstreaming Impact Investing Initiative. The report takes a deeper look at why and how asset owners began to include impact investing in their portfolios and continue to do so today, and how they overcame operational and cultural constraints affecting capital flow. Given that impact investing expertise is spread among dozens if not hundreds of practitioners and academics, the report is a curation of some -- but certainly not all -- of those leading voices. The 15 articles are meant to provide investors, intermediaries and policy-makers with actionable insights on how to incorporate impact investing into their work.The report's goals are to show how mainstream investors and intermediaries have overcome the challenges in the impact investment sector, and to democratize the insights and expertise for anyone and everyone interested in the field. Divided into four main sections, the report contains lessons learned from practitioner's experience, and showcases best practices, organizational structures and innovative instruments that asset owners, asset managers, financial institutions and impact investors have successfully implemented

    Eine Methodenlehre oder viele Methoden?

    No full text

    Concise data definition language (CDDL): A notational convention to express CBOR data structures

    No full text
    This document proposes a notational convention to express CBOR data structures (RFC 7049). Its main goal is to provide an easy and unambiguous way to express structures for protocol messages and data formats that use CBOR

    Concise Data Definition Language (CDDL): A Notational Convention to Express Concise Binary Object Representation (CBOR) and JSON Data Structures

    No full text
    This document proposes a notational convention to express Concise Binary Object Representation (CBOR) data structures (RFC 7049). Its main goal is to provide an easy and unambiguous way to express structures for protocol messages and data formats that use CBOR or JSON

    Silent speech command word recognition using stepped frequency continuous wave radar

    No full text
    Recovering speech in the absence of the acoustic speech signal itself, i.e., silent speech, holds great potential for restoring or enhancing oral communication in those who lost it. Radar is a relatively unexplored silent speech sensing modality, even though it has the advantage of being fully non-invasive. We therefore built a custom stepped frequency continuous wave radar hardware to measure the changes in the transmission spectra during speech between three antennas, located on both cheeks and the chin with a measurement update rate of 100 Hz. We then recorded a command word corpus of 40 phonetically balanced, two-syllable German words and the German digits zero to nine for two individual speakers and evaluated both the speaker-dependent multi-session and inter-session recognition accuracies on this 50-word corpus using a bidirectional long-short term memory network. We obtained recognition accuracies of 99.17% and 88.87% for the speaker-dependent multi-session and inter-session accuracy, respectively. These results show that the transmission spectra are very well suited to discriminate individual words from one another, even across different sessions, which is one of the key challenges for fully non-invasive silent speech interfaces

    A Reference Architecture for Integrating Safety and Security Applications on Railway Command and Control Systems

    No full text
    In critical infrastructures such as railway systems, the continuous and resilient availability of safety critical functions residing on actuator and sensor components must be ensured. Since these components are also more and more connected using the Internet Protocol (IP), they additionally require security functions to provide protection against attackers. Moreover, the railway infrastructure is highly distributed, with its critical components residing at the track side easily accessible to attackers. Thus, a continuous proofing that the safety-critical systems are not manipulated is required, too. The (safety) certification of such safety-critical systems covers both the hardware components and corresponding software components that compose a specific safety-critical application. Since security functions are currently not in use, they are not part of the certification. However, the integration of security functions is imperative to provide the basis for preventing or detecting manipulations of the system. In essence, co-residing security functions are required to retain and assure the trusted interoperability of safety critical systems integrated in the rapidly growing number of newly deployed control networks based on the IP. Thus, it is required that a given safety certification (and the given guarantees) must not be violated by the integration of security functions. In this paper, we present the first results of the ongoing HASELNUSS project1 by introducing the Haselnuss Reference Architecture (HRA) for Railway Command and Control Systems (CCS), that allows uncertified security functions to reside on the same hardware device as certified safety functions; without voiding the certification of these safety functions

    Security Requirements Engineering in Safety-Critical Railway Signalling Networks.

    No full text
    Securing a safety-critical system is a challenging task, because safety requirements have to be considered alongside security controls. We report on our experience to develop a security architecture for railway signalling systems starting from the bare safety-critical system that requires protection. We use a threat-based approach to determine security risk acceptance criteria and derive security requirements. We discuss the executed process and make suggestions for improvements. Based on the security requirements, we develop a security architecture. The architecture is based on a hardware platform that provides the resources required for safety as well as security applications and is able to run these applications of mixed-criticality (safety-critical applications and other applications run on the same device). To achieve this, we apply the MILS approach, a separation-based high-assurance security architecture to simplify the safety case and security case of our approach. We describe the assurance requirements of the separation kernel subcomponent, which represents the key component of the MILS architecture. We further discuss the security measures of our architecture that are included to protect the safety-critical application from cyberattacks
    corecore