44 research outputs found

    Structures and harmonic vibrational frequencies for excited states of diatomic molecules with CCSD(R12) and CCSD(F12) models

    Get PDF
    The equation-of-motion coupled-cluster method for excited states with the singles-and-doubles model (CCSD) has been implemented for ansatz 2 of the explicitly correlated CCSD(R12) and CCSD(F12) methods as part of the program package Dalton. In this model, an orthonormal complementary auxiliary basis set is used for the resolution-of-identity approximation in order to calculate the three-electron integrals needed for CCSD(R12) and CCSD(F12). The additional CCSD(R12) or CCSD(F12) terms introduced within ansatz 2, which are not present in ansatz 1, are derived and discussed with regard to the extra costs needed for their computation. As a first application the basis set convergence of equilibrium bond lengths and harmonic vibrational frequencies has been investigated for some singlet excited states of the diatomic molecules N2, CO, BF, and BH. The calculated CCSD(F12) results show that the average absolute deviations of the bond lengths and frequencies from the basis set limits are below 0.1 pm and 5 cm-1 as well as 0.05 pm and 1 cm-1 for the triple- and quadruple- basis sets, respectively. These deviations are shown to largely arise from the SCF basis set incompleteness errors. © 2009 American Institute of Physics.published_or_final_versio

    Highly accurate CCSD(R12) and CCSD(F12) optical response properties using standard triple-ζ basis sets

    Get PDF
    Coupled-cluster response theory for frequency-dependent optical properties within the coupled-cluster singles-and-doubles model (CCSD) has been derived and implemented for ansatz 2 of the explicitly correlated CCSD(R12) and CCSD(F12) methods as part of the program package DALTON. The basis set convergence of static dipole moments, polarizabilities, and parallel averages of first and second hyperpolarizabilities has been investigated for Ne, BH, N2, CO, and BF. The frequency-dependent results are presented for the electronic second-harmonic generation of N2. With triple-ζ basis sets, the CCSD(F12) correlation contributions using ansatz 2 are close to the basis set limits for dipole moments and second hyperpolarizabilities; the CCSD(R12) results are better than the CCSD results obtained with at least quintuple- ζ basis sets for polarizabilities and first hyperpolarizabilities. The exponent of Slater-type correlation factor for CCSD(F12) ground state energy may not be optimal and has to be re-examined for response properties. We also suggest that the remaining one-electron basis set errors arising within the coupled-cluster singles should be reduced by allowing excitations into the auxiliary orbital space. © 2009 American Institute of Physics.published_or_final_versio

    Magnetic circular dichroism spectra from resonant and damped coupled cluster response theory

    Full text link
    A computational expression for the Faraday A term of magnetic circular dichroism (MCD) is derived within coupled cluster response theory and alternative computational expressions for the B term are discussed. Moreover, an approach to compute the (temperature-independent) MCD ellipticity in the context of coupled cluster damped response is presented, and its equivalence with the stick-spectrum approach in the limit of infinite lifetimes is demonstrated. The damped response approach has advantages for molecular systems or spectral ranges with a high density of states. Illustrative results are reported at the coupled cluster singles and doubles level and compared to time-dependent density functional theory results.Comment: Submitted to J. Chem. Phys. on May 10, 202

    Damped (linear) response theory within the resolution-of-identity coupled cluster singles and approximate doubles (RI-CC2) method

    Full text link
    An implementation of a complex solver for the solution of the response equations required to compute the complex response functions of damped response theory is presented for the resolution-of-identity (RI) coupled-cluster singles and approximate doubles CC2 method. The implementation uses a partitioned formulation that avoids the storage of double excitation amplitudes to make it applicable to large molecules. The solver is the keystone element for the development of the damped coupled-cluster response formalism for linear and nonlinear effects in resonant frequency regions at the RI-CC2 level of theory. Illustrative results are reported for the one-photon absorption cross section of C60, the electronic circular dichroism of nn-helicenes (nn = 5, 6, 7), and the C6C_6 dispersion coefficients of a set of selected organic molecules and fullerenes.Comment: Submitted to J. Chem. Phys., Dec. 202

    Preferential pathways for light-trapping involving β-ligated chlorophylls

    Get PDF
    AbstractThe magnesium atom of chlorophylls (Chls) is always five- or six-coordinated within chlorophyll–protein complexes which are the main light-harvesting systems of plants, algae and most photosynthetic bacteria. Due to the presence of stereocenters and the axial ligation of magnesium the two faces of Chls are diastereotopic. It has been previously recognized that the α-configuration having the magnesium ligand on the opposite face of the 17-propionic acid moiety is more frequently encountered and is more stable than the more seldom β-configuration that has the magnesium ligand on the same face [T.S. Balaban, P. Fromme, A.R. Holzwarth, N. Krauβ, V.I. Prokhorenko, Relevance of the diastereotopic ligation of magnesium atoms in chlorophylls in Photosystem I, Biochim. Biophys. Acta (Bioenergetics), 1556 (2002) 197–207; T. Oba, H. Tamiaki, Which side of the π-macrocycle plane of (bacterio)chlorophylls is favored for binding of the fifth ligand? Photosynth. Res. 74 (2002) 1–10]. In photosystem I only 14 Chls out of a total of 96 are in a β-configuration and these occupy preferential positions around the reaction center. We have now analyzed the α/β dichotomy in the homodimeric photosystem II based on the 2.9 Å resolution crystal structure [A. Guskov, J. Kern, A. Gabdulkhakov, M. Broser, A. Zouni, W. Saenger, Cyanobacterial photosystem II at 2.9 Å resolution: role of quinones, lipids, channels and chloride, Nature Struct. Mol. Biol. 16 (2009) 334–342] and find that out of 35 Chls in each monomer only 9 are definitively in the β-configuration, while 4 are uncertain. Ab initio calculations using the approximate coupled-cluster singles-and-doubles model CC2 [O. Christiansen, H. Koch, P. Jørgensen, The second-order approximate coupled cluster singles and doubles model CC2, Chem. Phys. Lett. 243 (1995) 409–418] now correctly predict the absorption spectra of Chls a and b and conclusively show for histidine, which is the most frequent axial ligand of magnesium in chlorophyll–protein complexes, that only slight differences (<4 nm) are encountered between the α- and β-configurations. Significant red shifts (up to 50 nm) can, however, be encountered in excitonically coupled β–β-Chl dimers. Surprisingly, in both photosystems I and II very similar “special” β–β dimers are encountered at practically the same distances from P700 and P680, respectively. In purple bacteria LH2, the B850 ring is composed exclusively of such tightly coupled β-bacteriochlorophylls a. A statistical analysis of the close contacts with the protein matrix (<5 Å) shows significant differences between the α- and β-configurations and the subunit providing the axial magnesium ligand. The present study allows us to conclude that the excitation energy transfer in light-harvesting systems, from a peripheral antenna towards the reaction center, may follow preferential pathways due to structural reasons involving β-ligated Chls

    TURBOMOLE: Today and Tomorrow

    Get PDF
    TURBOMOLE is a highly optimized software suite for large-scale quantum-chemical and materials science simulations of molecules, clusters, extended systems, and periodic solids. TURBOMOLE uses Gaussian basis sets and has been designed with robust and fast quantum-chemical applications in mind, ranging from homogeneous and heterogeneous catalysis to inorganic and organic chemistry and various types of spectroscopy, light–matter interactions, and biochemistry. This Perspective briefly surveys TURBOMOLE’s functionality and highlights recent developments that have taken place between 2020 and 2023, comprising new electronic structure methods for molecules and solids, previously unavailable molecular properties, embedding, and molecular dynamics approaches. Select features under development are reviewed to illustrate the continuous growth of the program suite, including nuclear electronic orbital methods, Hartree–Fock-based adiabatic connection models, simplified time-dependent density functional theory, relativistic effects and magnetic properties, and multiscale modeling of optical properties

    Electronic Structure: Hartree-Fock and Correlation Methods

    Get PDF
    corecore