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Highly accurate CCSD„R12… and CCSD„F12… optical response properties
using standard triple-� basis sets

Jun Yanga� and Christof Hättigb�

Lehrstuhl für Theoretische Chemie Ruhr, Universität Bochum, Universitätsstrasse 150,
D-44801 Bochum, Germany

�Received 9 June 2009; accepted 21 July 2009; published online 17 August 2009�

Coupled-cluster response theory for frequency-dependent optical properties within the
coupled-cluster singles-and-doubles model �CCSD� has been derived and implemented for ansatz 2
of the explicitly correlated CCSD�R12� and CCSD�F12� methods as part of the program package
DALTON. The basis set convergence of static dipole moments, polarizabilities, and parallel averages
of first and second hyperpolarizabilities has been investigated for Ne, BH, N2, CO, and BF. The
frequency-dependent results are presented for the electronic second-harmonic generation of N2.
With triple-� basis sets, the CCSD�F12� correlation contributions using ansatz 2 are close to the
basis set limits for dipole moments and second hyperpolarizabilities; the CCSD�R12� results are
better than the CCSD results obtained with at least quintuple-� basis sets for polarizabilities and first
hyperpolarizabilities. The exponent of Slater-type correlation factor for CCSD�F12� ground state
energy may not be optimal and has to be re-examined for response properties. We also suggest that
the remaining one-electron basis set errors arising within the coupled-cluster singles should be
reduced by allowing excitations into the auxiliary orbital space. © 2009 American Institute of
Physics. �DOI: 10.1063/1.3204388�

I. INTRODUCTION

The reliable and accurate calculations of some ground
state optical properties such as dipole moments, polarizabil-
ities, and hyperpolarizabilities are computationally expensive
since correlated wave function-based methods �e.g., coupled-
cluster �CC�� have to be applied together with very large
one-electron basis sets. This is due to the following twofold
reasons: The low quality of wave functions obtained with
small- or medium-sized basis sets as well as the steep in-
crease in the computational costs which scale with the num-
ber of electrons n and basis functions N, for example, as
O�n2N4� for CCSD and O�n3N4� for CCSD�T�. Improving
the basis set from, e.g., aug-cc-pVTZ �which just fulfills the
minimum requirements for a correlated calculation of polar-
izabilities� to aug-cc-pVQZ �which is needed to exploit the
accuracy of methods that account for connected triples� in-
creases the computational costs by almost an order of mag-
nitude. With the aug-cc-pV5Z basis the costs increase by
another factor of �7. Therefore it is desirable to develop
methods that can either improve the basis set convergence or
reduce the cost scaling with n and N while still based on the
virtue of systematically improvable wave function models. It
has been known for decades that the cusp condition for cor-
related wave functions is in the coalescent region of two
electrons poorly described with Slater determinants built
from one-electron basis functions. In the past decades, the
so-called explicitly correlated R12 methods, which introduce
a correlation factor linearly �R12� or exponentially �F12� de-
pending on the interelectronic distance into the wave

function,1–3 have been systematically established based on
the common methods and give the hierarchy of MP2-R12,3

CC2-R12, CCSD-R12, CCSD�T�-R12,4–6 and
CCSD�R12�.7,8 These variants lead to a significant improve-
ment in the description of the short-range electron correla-
tion and give high accuracies of at least quintuple-� quality
with only triple-� basis sets for ground state correlation
energies.9–11

Only recently have CC-R12 methods been used also in
the framework of CC response theory to calculate higher-
order properties �polarizabilities, etc.� and excited states.
Fliegl et al.12,13 extended CC2-R12 to compute excitation
energies. Neiss and Hättig14 implemented CCSD�R12� in the
so-called ansatz 1 for response theory to evaluate polarizabil-
ities and hyperpolarizabilities. The accelerated basis set con-
vergence of these quantities has been observed to be similar
to those of ground state correlation energies. We have re-
cently derived and implemented equation-of-motion
CCSD�R12� and CCSD�F12� approaches using the more ac-
curate ansatz 2 to compute vertical transition energies for
excited states.15 The calculated CCSD�F12� bond distances
and harmonic vibrational frequencies of some singlet excited
states of diatomic molecules have demonstrated a much im-
proved basis set convergence better than quintuple-� quality
with only triple-� orbital basis sets.

In the current paper, we continue to report the derivation
and implementation of the explicitly correlated contributions
for frequency-dependent linear, quadratic, and cubic re-
sponse functions with CCSD�R12� and CCSD�F12� models
for ansatz 2. In the present implementation, which has been
developed as a part of the program package DALTON,16 a
property of order n is evaluated as a full nth derivative of the
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time-averaged Lagrangian. In this way, zeroth-order cluster
amplitudes and Lagrangian multipliers are sufficient for first-
order properties �e.g., dipole moments�; second-order prop-
erties �e.g., polarizabilities� need additionally the iterative
solution of only first-order CC response amplitudes; third-
order �e.g., first hyperpolarizabilities� and fourth-order prop-
erties �e.g., second hyperpolarizabilities� require additionally
first-order Lagrangian multipliers and second-order CC re-
sponse amplitudes, respectively.

The present paper is organized as follows: The explicitly
correlated CCSD�R12� and CCSD�F12� models, their re-
sponse functions, and the implementation are discussed, re-
spectively, in parts A, B, and C of Sec. II. Computational and
technical details are given in part A of Sec. III. The results
for dipole moments and �hyper�polarizabilities for Ne, BH,
BF, CO, and N2 are presented and discussed in Sec. III.
Finally the paper is concluded in Sec. IV.

II. THEORY AND IMPLEMENTATION

A. CCSD„R12… and CCSD„F12… models

Since the CCSD�R12� and CCSD�F12� methods for
ground state energies and excitation energies have been de-
scribed in detail in a number of references,7,15,17 we will
discuss the models only briefly. The exponential ansatz of
conventional CCSD �Ref. 18� is extended by including R12

or F12 double replacements T̂2�,

T̂ = T̂1 + T̂2 + T̂2�. �1�

For a closed shell reference �HF�, the spin-free cluster opera-
tors are

T̂1 = �
ai

ti
aEai, �2�

T̂2 =
1

2 �
aibj

tij
abEaiEbj , �3�

T̂2� =
1

2�
xiyj

cij
xy�

��

w��
xy E�iE�j , �4�

where the operators Eai and E�i give the conventional and
R12 single excitations. ti

a, tij
ab, and cij

xy are singles, doubles,
and R12 doubles cluster amplitudes, respectively. Through
the paper �i , j ,k , l , . . .	 denotes a set of occupied orbitals,
�a ,b ,c ,d , . . .	 virtual orbitals, and �� ,� , . . .	 a complete
space complementary to the occupied orbitals in ansatz 2.
�x ,y , . . .	 are those conventional molecular orbitals �MOs�
that enter the geminal-orbital overlap integral w��

xy ,

w��
xy = 
���1����2���xy�1,2��

= 
���1����2��ŵ12��x�1��y�2�� . �5�

In principle, x ,y , . . . can be any MOs due to the correlation
projector enclosed in ŵ12. Usually, only occupied MOs are
used in Eq. �5� when calculating ground state energies and
only a few additional virtual MOs have been included to
accurately describe the excited electronic states of small
molecules.13 In Eq. �5�, ŵ12 is defined as the product of a

projection operator Q̂12 and a correlation factor f12 which
depends on the interelectronic distance r12,

ŵ12 = Q̂12f12. �6�

The so-called R12 and F12 schemes refer to different defini-
tions of the correlation factor f12, which is just r12 in the R12
and 1−e−�r12 in the F12 methods. For ansatz 2 used in the

present study Q̂12 is given by

Q̂12 = �1 − Ô1��1 − Ô2� − V̂1V̂2, �7�

where Ôi and V̂i project functions for electron i onto, respec-
tively, the occupied and virtual spaces. For a more detailed
discussion we refer to Refs. 8 and 19.

Fliegl et al.7 introduced the CCSD�R12� model by keep-

ing only the lowest order in T̂2� but the full similarity trans-
formation with the conventional cluster operator

e−T̂1+T̂2�̂eT̂1+T̂2 in the spirit of the CC2 and CC3 models to
define an approximate CCSD-R12 model through the follow-
ing cluster amplitude equations:

�ai
CCSD�R12� = �ai

CCSD + �ā

i
���̃,T̂2���HF� , �8�

�aibj
CCSD�R12� = �aibj

CCSD + �ab

ij
��F̂,T̂2�� + ��̃ + ��̂,T̂2�,T̂2��

	�HF� , �9�

�xiyj
CCSD�R12� = �xiyj

CCSD + �xy

ij
��F̂,T̂2 + T̂2�� + �̃ + ��̃,T̂2�

	�HF� . �10�

Above, F̂ is the Fock operator, �̂ is the electron fluctuation

potential, and �̃ is defined by a similarity transformation

with T̂1,

�̃ = e−T̂1�̂eT̂1. �11�

B. CCSD„R12… and CCSD„F12… response functions

In recent developments of CC response theory the
linear,20 quadratic,21 and cubic22 response functions have
been derived and implemented for the standard CCSD ansatz
as derivatives of a variational quasienergy Lagrangian. Such
an analytical response approach has made it possible to de-
rive higher-order response functions in a mathematically
simple and transparent23 manner. In the current paper we
follow the same strategy for the CCSD�R12� and
CCSD�F12� variants to identify additional explicitly corre-
lated contributions to the linear, quadratic, and cubic re-
sponse functions when ansatz 2 is applied.

We consider a Hermitian time-dependent one-particle

periodic perturbation V̂�t� �e.g., an electric field�,

074102-2 J. Yang and C. Hättig J. Chem. Phys. 131, 074102 �2009�
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V̂�t� = �
X


X��X�e−i�XtX̂ , �12�

where the sum over X accounts for the components of V̂�t�
with the frequency �X and collects all monochromatic physi-

cal fields X̂ that depend on the field strength 
X��X� only
linearly. We assume that the index X includes also the com-

plex conjugate part 
X
†�−�X�ei�XtX̂† of each 
X��X�e−i�XtX̂

with the conditions 
X
†�−�X�=
X��X� and X̂†= X̂. With V̂�t�,

one can define the perturbed Hamiltonian Ĥ�t�= Ĥ0+ V̂�t� and
the quasienergy

Q�t� = 
HF�Ĥ�t� − i
�

�t
�eT̂�t��HF� . �13�

The time- and perturbation-dependent cluster equations are

obtained by replacing in the time-independent equations Ĥ0

with Ĥ�t�− i�� /�t�. The time-dependent CC wave function is

parametrized with a time-dependent cluster operator T̂�t�
=��t��t�̂� but a time- and perturbation-independent refer-
ence state to ensure a corrected pole structure of the response
functions. The time-dependent quasienergy Lagrangian has
the form

L�t� = Q�t� + �
�

t̄��t����t� , �14�

where t̄��t� are the time-dependent Lagrangian multipliers
which are determined by requiring that L�t� be stationary
with respect to variations of the cluster amplitudes t��t�. The
construction of Lagrangian in Eq. �14� implies that the
oribtal-unrelaxed approach is used in order to avoid the
transmission of singularities from the HF reference wave
function into the pole structures of the CC response func-
tions. In the present implementation, an nth order property is
conveniently calculated as an nth order derivative of the
time-averaged quasienergy Lagrangian with respect to field
strengths rather than as derivatives of quasienergy in order to
employ the 2n+1 �e.g., cluster amplitude� and 2n+2 �e.g.,
Lagrangian multiplier� rules.23,24 The time average of L�t�
reads

�L�t�	T =
1

T
�

−T/2

T/2

L�t�dt , �15�

which eliminates the term i�� /�t� so that the analogy of time-
independent variational CC response theory can be carried
over to the time-dependent case straightforwardly. The
frequency-dependent response functions are thus obtained as
derivatives of the real part of �L�t�	T,



X1;X2, . . . ,Xn���2,. . .,�n
=  dn Re��L�t�	T�

d
X1
��1� ¯ d
Xn

��n��
0

,

�16�

with the frequencies subject to the condition �1=−��2+ ¯

+�n�. That in Eq. �16� only the real part of �L�t�	T is taken
introduces a symmetrization of the response functions which
ensures that the response functions have the correct
symmetries with respect to a sign change in the frequencies

or complex conjugation. For CC-R12 models


X1 ;X2 , . . . ,Xn���2,. . .,�n

can be decomposed into conven-
tional CC contributions and R12 contributions,



X1;X2, . . . ,Xn���2,¯,�n
= 

X1;X2, . . . ,Xn���2,. . .,�n

CC

+ 

X1;X2, . . . ,Xn���2,. . .,�n

R12 ,

�17�

where the R12 contributions are defined as the derivatives of
the explicitly correlated contributions from �ai

R12, �aibj
R12,

�xiyj
R12, and 
HF��Ĥ , T̂2���HF� to the Lagrangian. The expres-

sions of the R12 contributions to first-order properties and
linear, quadratic, and cubic response functions are formally
similar to those of the conventional CC expressions,



X��0
R12 = t̄�0��X��X� , �18�



X;Y���Y

R12 = 1
2 Ĉ��P̂XY� 1

2FtX��X�tY��Y�

+ �X��X�tY��Y�	 , �19�



X;Y,Z���Y,�Z

R12 = 1
2 Ĉ��P̂XYZ� 1

6GtX��X�tY��Y�tZ��Z�

+ 1
2FX��X�tY��Y�tZ��Z�

+ 1
2 t̄X��X�BtY��Y�tZ��Z�

+ t̄X��X�AY��Y�tZ��Z�	 , �20�



X;Y,Z,W���Y,�Z,�W

R12 = 1
2 Ĉ��P̂XYZW� 1

4��ZW��Z,�W�

+ 1
2FtZW��Z,�W��tXY��X,�Y�

+ 1
6 t̄X��X�CtY��Y�tZ��Z�tW��W�

+ 1
2 t̄X��X�BYtZ��Z�tW��W�	 , �21�

where tX and tXY are the first- and second-order response
vectors which are defined as the first and second derivatives
of the cluster amplitudes with respect to 
X as well as 
X and

Y, respectively. t̄�0� and t̄X are the zeroth- and first-order
responses of the Lagrangian multipliers. The cubic response
function of Eq. �21� needs the intermediate �XY,

�XY = P̂XY� 1
2GtX��X�tY��Y� + FXtY��Y� + t̄Y��Y�BtX��X�

+ t̄Y��Y�AX	 . �22�

The operator Ĉ�� symmetrizes a function with respect to an
inversion of the signs of all frequencies ��	 and simulta-

neous complex conjugation, i.e., Ĉ��f���= f���+ f��−��.
The operator P̂AB¯ generates all permutations of the indices
A ,B , . . .. of the perturbation operators together with their ac-
companied frequencies. The perturbation-independent B, C,
F, and G quantities as well as perturbation-dependent coun-
terparts FX, AX, BX, and �X involve partial derivatives of the
Lagrangian to various orders �see Table 1 in Ref. 14 for
original definitions�. For the explicitly correlated parts to the
response functions these quantities have to be defined as de-
rivatives of only the explicitly correlated part of the Lagrang-
ian. An additional difference compared to conventional CC

074102-3 CCSD�R12� and CCSD�F12� for response theory J. Chem. Phys. 131, 074102 �2009�
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contributions is that for the cubic response function the ex-
plicitly correlated part of H vanishes for the CCSD�R12� and
CCSD�F12� models. This is because H is a fourth-order par-
tial derivative of the Lagrangian with respect to cluster am-
plitudes while the explicitly correlated part of the vector
function ��

R12�t� depends at most to third order on cluster
amplitudes. When a higher-order response than cubic is cal-
culated, the R12 part of the D matrix, which is the first
partial derivative of H with respect to the Lagrangian multi-
pliers, also vanishes. In the current work, we have identified
�X, �X, and the Jacobi matrix A as basic quantities which we
have analytically derived for ansatz 2 of CCSD�R12� and
treated others, rather than pursuing their explicit working
equations, by means of finite difference based on these.

As seen in the above equations, before the response
functions can be completed one needs to evaluate the re-
sponses of the cluster amplitudes tX and tXY and the Lagrang-
ian multipliers t̄X which are at least one order lower than the
corresponding response functions. For example, the qua-
dratic response function needs only the first-order response
of cluster amplitudes and multipliers and the cubic response
additionally only the second-order response of the cluster
amplitudes. The great advantage of the variational Lagrang-
ian scheme is that the number of response equations is sig-
nificantly reduced. The response equations for the cluster
amplitudes t�

�n� and Lagrangian multipliers t̄�
�n� at any order n

are in general of the form

− At�n���1, . . . ,�n� = ��n���1, . . . ,�n� , �23�

− t̄�n���1, . . . ,�n�A = �̄�n���1, . . . ,�n� , �24�

where the Jacobi matrix A is defined as

A�� =  ���

�t�
�

0
. �25�

For example, the first- and second-order right hand side vec-
tors for the amplitude response equations are

��1� = �X��X� , �26�

��2� = P̂XY� 1
2BtX��X�tY��Y� + AXtY��Y�	 . �27�

The zero- and first-order right hand side vectors for the
Lagrangian multipliers are

�̄�0� = ��0�, �28�

�̄�1� = �X��X� + FtX��X� , �29�

with ��0� obtained as the first partial derivative of the unper-
turbed CCSD�R12� energy with respect to the cluster ampli-
tudes. The R12 contribution to ��0� is independent of any
amplitude, and therefore the R12 contributions to those in-
termediates �e.g., F� that involve a further partial derivative
of ��0� with respect to amplitudes vanish.

C. Implementation

1. Jacobi left hand side transformation

The Jacobi transformations from both the right �see Eq.
�23�� and left �see Eq. �24�� sides are the most expensive
iterative steps in response calculations. The Jacobi right hand
side transformation AR for CCSD�R12� with ansatz 2 has
been derived and discussed in our previous report.15 In the
present paper, we will discuss the Jacobi left hand side trans-
formation,

�L = �A , �30�

where � is the left eigenvector �e.g., Lagrangian multiplier
t̄�n�� and A the Jacobi matrix defined in Eq. �25�. Explicit
expressions for the additional R12 contributions to �L that
are not present in CCSD�R12� ansatz 1 which has been dis-
cussed in Ref. 14 are given in Table I. All equations have
been derived based on the complementary auxiliary basis set
�CABS� approach25 and �p� ,q� , . . .	 denotes in the following
the set of CABS orbitals. Compared to ansatz 1, several extra
contributions are found to both singles, conventional
doubles, and R12 doubles due to the augmented R12 virtual
space in ansatz 2.

The singles contributions of �ai
C�, �ai

D�, �ai
C�, and �ai

D� are
the computationally most demanding terms in a CCSD�R12�
response calculation since they involve three virtual and one
CABS orbital indices and have to be computed in every it-
eration. In order to reduce the operation counts, the compu-

tations of these terms are driven by the P̃- and Q̃-local inter-
mediates �see Table I� that depend on the left trial vector �.
These local intermediates have to be iteratively recalculated
and stored on disk in each linear transformation and read
back again when thereafter needed. The most expensive
steps to obtain the singles contributions are therefore the

computations of the P̃ and Q̃ that scale as O3V2N�, where O
and V denote the number of occupied and virtual orbitals and
N� stands for the size of auxiliary basis sets. The remaining

singles contributions of �ai
F�, �ai

B�, �ai
H�, and �ai

I� are less expen-
sive by at least one order of magnitude, since they can be
computed as contractions of the defined global intermediates
�see Table I� with the vector � or �-transformed integrals that
involve only one virtual index. These global intermediates
are independent of the left vector and constructed at once
when the CCSD�R12� cluster amplitudes are converged.

The contributions to the double excitation part �aibj of
the result vector have been implemented as contractions of
the vector � or �-dependent intermediates with precalculated
global intermediates. Among these contractions, the compu-
tationally most demanding ones are again the C�, D�, C�,
and D� contributions, which require a total operation count
of 2O3V3+2O3V2N�. Although the global intermediates Cbi,ck�
and Dbi,ck� scale as O3V2N�, they are precalculated once after
the cluster amplitude equations have been solved.

Finally the most expensive iterative step for �xiyj is the

construction of the M̃ local intermediates for �xiyj
C� and �xiyj

D�

terms �see Table I� with an operation count of 2O3V2N�,

074102-4 J. Yang and C. Hättig J. Chem. Phys. 131, 074102 �2009�

 Reuse of AIP Publishing content is subject to the terms: https://publishing.aip.org/authors/rights-and-permissions. Downloaded to  IP:  147.8.204.164 On: Fri, 02 Sep 2016

07:00:47



while the global intermediates Cakp�j
� and Dakp�j

� that are
available from the solution of ground state cluster equations
are converged.

2. �X and �X intermediates

�X and �X are important perturbation-dependent interme-
diates that are used not only to solve the first-order right and
left response equations �see Eqs. �26� and �29�� but also to
construct the FX and AX matrices. Explicit expressions for
the additional R12 contributions to �X and �X with ansatz 2

are given in Table II. Formally, the perturbation operator X̂
appears in �X and �X in terms which are similar to contribu-
tions of the Fock operator to the ground state cluster equa-
tions. However, in difference to those contributions we can
for the perturbation operators not apply a Brillouin condition
to simplify the expressions. To avoid perturbation-dependent

two-electron integrals of the form 
�x�y�ŵ12
† �X̂1

+ X̂2�ŵ12��v�w� we thus use an approximate resolution of the
identity in the combined MO and CABS basis:

ŵ12
† �X̂1 + X̂2� � ŵ12

† ��P̂1 + P̂1��X̂1�P̂1 + P̂1��

	�P̂2 + P̂2��X̂2�P̂2 + P̂2��� , �31�

where P̂i�=�p���p��i��
�p��i�� is the projector on the CABS
basis of the electron i to resolve the identity

1 � P̂i + P̂i�. �32�

�X and �X are calculated in a noniterative approach based on
converged zero-order cluster amplitudes and Lagrangian
multipliers, driven by the perturbation-dependent intermedi-
ates in the current implementation, XV�a

xy and XV�q�
xy , which

are defined in Table II. Here � is the index which runs over
both one-electron atomic and CABS orbitals. XV�a

xy and XV�q�
xy

are independent of CC cluster amplitudes and can be precal-
culated and stored, once and for all. The computational costs
of �X and �X are minor since the most expensive terms for
�aibj

X and �aibj
X scale as only O4V2 and are noniterative.

TABLE I. CCSD�R12� specific contributions to the Jacobi matrix transformations from the left for CCSD�R12�/ansatz 2. These contributions are not present

for CCSD�R12�/ansatz 1. We write the transformed result vectors as �ai
�R12�=�ai

C�+�ai
D�+�ai

E�+�ai
F�+�ai

H�+�ai
I�+�ai

B�+�ai
C�+�ai

D�+�ai
E�, �aibj

�R12�=�aibj
C� +�aibj

D� +�aibj
E�

+�aibj
E� +�aibj

C� +�aibj
D� +�aibj

E� �conventional doubles�, and �xiyj
�R12�=�xiyj

C� +�xiyj
D� +�xiyj

E� +�xiyj
H� +�xiyj

I� �R12 doubles�. In the table, the transformed integrals are Lpq
rs

=2gpq
rs −gpq

sr , t�kl
bp�=�xy�kl

xyrxy
bp� and t̄kl

bp�=�xyckl
xyrxy

bp�, where gpq
rs = 
�p�q�1 /r12��r�s� and rpq

rs = 
�p�q�f12��r�s�.

Left hand side Jacobi matrix transformations ��
L=����A��

Singles

�ai
C�D�= 1

2�bkp��P̃bkip�
� L

kb̃

p�a
− Q̃bkip�

� g
kb̃

ap��
− 1

2�mkp��P̃akmp�
� Lki

p�m̃− Q̃akmp�
� gki

m̃p�� P̃bkip�
� =�lc�2t̄lk

cp�− t̄kl
cp���li

cb

Q̃bkip�
� =�lct̄kl

cp��2�il
cb+�li

cb�
�ai

C�D�=�bkp�P̃bkip�
� gkp�

ba − 1
2�bkp��P̃bkip�

� + Q̃bkip�
� �gkp�

ab P̃bkip�
� =�lc�2tlk

cb− tkl
cb�t�li

cp�

Q̃bkip�
� =�lctkl

cb�2t�il
cp�+ t�li

cp��

�ai
E�E�=�bp��Ỹp�b

� L
b̃i

p�a
+ Ỹp�b

� Lp�i
ba �−�p�Ỹp�a

� Fi
p� Ỹp�b

� = 1
4�k�P̃bkkp�

� + Q̃bkkp�
� �

Ỹp�b
� = 1

4�k�P̃bkkp�
� + Q̃bkkp�

� �

�ai
F�B�=−�klp�t�kl

ap��p�kli
F�B� �p�kli

F�B�=gip�
kl +�cdtkl

cdgip�
cd

�ai
H�I�=−�b�i

bEba� +�bj� j
bDai,bj� See below for general forms of Eba� and Dai,bj�

Conventional doubles

�aibj
C� =− 1

2�kc�2�kj
ac+� jk

ac�Cbi,ck� Cbi,ck� =−�p�lt̄lk
cp�gli

bp�

�aibj
D� = 1

2 �2− P̂ij��kc�ik
acDbj,ck� Dbj,ck� =�p�l�2t̄kl

cp�− t̄lk
cp��Ljl

bp�

�aibj
E� =−�p�Lij

ap��klct̄kl
cp��kl

cb+�c�ij
acEcb� Ecb� =−�p�lmt̄ml

cp�Lml
bp�

�aibj
E� =�xy�ij

xyCxy,ab
�ij�

�aibj
C� =− 1

2�p�m�2t�mj
ap�+ t�jm

ap��Cimp�b
� Cimp�b

� =gip�
m̃b

�aibj
D� = 1

2 �2− P̂ij��p�mt�im
ap�Djbp�m

� Djbp�m
� =Ljp�

bm̃

�aibj
E� =�p�t�ij

ap�Ep�b
� Ep�b

� =�m�Lp�m
bm̃ −Lp�m

bm �

R12 doubles

�xiyj
C�D�= 1

2�bp�rxy
bp�M̃bi,j

p� M̃bi,j
p� =−�ak��2�ik

ab+�ki
ab�Cakp�j

� + �2− P̂ij��ki
abDakp�j

� 	
�xiyj

E� =�bp�rxy
bp��a��ij

baEp�a
� +Lij

p�aỸab� Ỹab=�mnctmn
ca �mn

cb

Ep�a
� =�k�Lãk

p�k̃−Lak
p�k�−�dlm�2tlm

da− tlm
ad�glm

dp�

�xiyj
H� =−�kp��2gij

k̃p�−gji
k̃p���arxy

ap��k
a

�xiyj
I� =�ap��i

a�2rxy
ap�−ryx

ap���bk�2gkj
bp�−gjk

bp��tk
b

�xiyj
E� =�ab�ij

abCab,xy
�ij�
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3. Matrix transformations for higher derivatives
of Lagrangian

The remaining quantities needed for the response func-
tions, Eqs. �18�–�21�, are the matrices B, C, F, G, FX, AX,
and BX, which are defined as partial third and fourth deriva-
tives of the Lagrangian with respect to cluster amplitudes
and multipliers. These matrix transformations are obtained
by using a finite difference scheme based on A, �X, and �X.
The computational costs for finite differences can be signifi-
cantly reduced by noting the following facts. First of all, we
realize that the finite difference computations are only in-
volved in noniterative procedures, i.e., the computations of
response functions �see Eqs. �18�–�21�� and right hand side
vectors ��n� and ��n� �see Eqs. �26�–�29�� in the response
equations �see Eqs. �23� and �24��. Second, it has been
implemented such that we apply the finite difference scheme
only to lower-order matrix transformations from which some
higher-order matrix transformations are derived as follows:

t̄X��X�BtYtZ = F�t̄X�tYtZ and t̄X��X�AYtZ = �Y�t̄X�tZ,

�33�

t̄X��X�CtYtZ = G�t̄X�tYtZ and t̄X��X�BYtZ = FY�t̄X�tZ.

�34�

In the above equations, the G�t̄X�tYtZ is the most expensive
transformation since it cannot be reduced to a first derivative
of an available analytical intermediate as all other matrix

transformations. As one example for implementing the finite
difference, the F�t̄X�tYtZ is calculated as

�
��

F���t̄X�t�
Yt�

Z = �
�

t�
Y��

XZ, �35�

with

��
XZ = �

�

��
L�t̄X,t� + �t�

Z� − ��
L�t̄X,t� − �t�

Z�
2�

, �36�

where ��
L is the Jacobi left hand side transformation that has

been discussed previously and is calculated analytically. For
the calculations reported below we used �=10−6 a.u. with
which, for example, the CCSD polarizabilities and first and
second hyperpolarizabilities can be well reproduced at the
numerical accuracy of 10−5 a.u. compared to the results ob-
tained with analytically derived matrix transformations.

III. APPLICATIONS

A. Computational details

We have applied the above implementation of
CCSD�R12� and CCSD�F12� response functions to compute
the dipole moments, polarizabilities, and hyperpolarizabili-
ties of Ne as well as BH, N2, CO, and BF. The bond dis-
tances were fixed at 1.232 Å for BH,26 1.098 Å for N2,27

1.128 Å for CO,26 and 1.262 Å for BF.26 All calculations
have been carried out with frozen-core approximations for
the 1s orbitals at the atoms Ne, B, C, N, O, and F. The

TABLE II. Complete CCSD�R12� contributions to �X and �X using ansatz 2. In the table, the overlap matrix

element between geminal functions is given as Sxy
vw= 
�x�1��y�2��ŵ12

† ŵ12��v�1��w�2��. Xr
s= 
�r�X̂��s� is the prop-

erty integral over two general orbitals �r and �s. The particle permutation operator P̂pq
rs is defined as P̂pq

rs �pq
rs

=�pq
rs +�qp

sr . C�q are MO coefficients and tqp= tq
p if p is a virtual and q an occupied MO and 0 otherwise.

Contributions to ��
X = ��2L /�
X��X�� t̄��0

Singles
�ai

X =� jxycji
xy����j

p XV�a
xy

Conventional doubles

�aibj
X = P̂ij

ab�xycij
xy����a

p XV�b
xy

R12 doubles

�xiyj
X =�vwcij

vw�W̃xy
vw+W̄xy

vw�− P̂ij
xy�vwSxy

vw�kcik
vwXk

j̃ �xiyj�X = P̂ij
xy�abtij

ab����a
h XV�b

xy

Contributions to ��
X = ��2L /�
X��X�� t��0

Singles

�ai
X =−�bklt̄kl

ab�xyckl
xy����i

p XV�b
xy

�ai�
X=−�xyvw�klc̄ki

xyckl
vwSxy

vwXl
a

−�klp��vwc̄kl
vwrvw

ap��xyckl
xy����i

p XV�p�
xy

Conventional doubles

�aibj
X = P̂ij

ab�xyc̄ij
xy����a

h XV�b
xy

R12 doubles

�xiyj
X = P̂ij

xy�at̄i
a����j

p XV�a
xy �xiyj�X = P̂ij

xy�abt̄ij
ab����a

p XV�b
xy

�xiyj�X =�vw�c̄ij
vw�W̃vw

xy +W̄vw
xy �− P̂ij

xySvw
xy �kc̄ik

vwXj
k̃�

Related intermediates
XV�a

xy =�p�X�
p�rp�a

xy XV�q�
xy =�bX�

brbq�
xy +�p�X�

p�rp�q�
xy

W̃xy
vw= P̂xy

vw��p�crxy
p�cXVp�c

vw +�p�q�rxy
p�q�XVp�q�

vw 	 W̄xy
vw= P̂xy

vw�cq�rxy
cq�����c

p XV�q�
vw

Transformation matrices
��p

h =�qC�q�1+ tqp� ��p
p =�qC�q�1− tpq�
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standard Dunning n-aug-cc-pVXZ �n-aVXZ in abbreviation�
family28 augmented with a varying number of diffuse func-
tions �n=q for Ne, n=t for other molecules, and n=d for
frequency-dependent calculations� has been applied with X
=T, Q, and 5 for conventional CCSD. For the Ne atom, a
CCSD calculation with the q-aV6Z basis has also been per-
formed. It is necessary to use diffuse functions for the calcu-
lations in order to avoid sometimes nonmonotonic or scat-
tered results with respect to the cardinal numbers of the basis
sets. Moreover, for small molecules the outer valence space
important to dipole moments and �hyper�polarizabilities may
be described accurately via the diffuse basis functions and
the electronic cusp region is left responsible for the major
part of basis set incompleteness errors. The CCSD�R12� and
CCSD�F12� calculations have been performed with n-aVTZ
and n-aVQZ orbital basis sets for Ne and with the n-aVTZ
basis for the molecules. The aV6Z basis has been applied as
CABS basis for all calculations in order to make sure that the
errors introduced by the CABS approximation are only mi-
nor. The exponents of F12 exponential geminal functions are,
respectively, 1.6, 1.8, 1.2, 1.3, and 0.9 for Ne, N2, CO, BF,
and BH, which are taken over from our previous work.15

All R12 and F12 calculations have employed the
CABS+approach by Valeev,25 which essentially means that
the RI is done in the union of the orbital and the auxiliary
basis sets. Standard approximation B �Ref. 29� was used
throughout for the matrix elements of the geminal functions
over the Fock operator. In the present calculations, we have
only included occupied orbitals to construct the R12 and F12
geminal functions.

For the comparison the CCSD basis set limits of the
static properties were estimated by adding the Hartree–Fock
�HF� results for the t-aV5Z basis �but q-aV6Z for Ne atom�
to the basis set limits for the correlation contribution which
were extrapolated from CCSD/t-aV5Z and CCSD/t-aVQZ
results using30

P� �
X3PX − �X − 1�3PX−1

X3 − �X − 1�3 , �37�

where X stands for the cardinal number of the basis set
n-aVXZ, and P�, PX, and PX−1 are the correlation contribu-
tions to the properties at the infinite, n-aVXZ, and n-aV�X
−1�Z basis sets, respectively.

As higher-order properties, we have computed the paral-
lel isotropic averages of the first and second hyperpolariz-
abilities, �� and ��, according to the definitions31

�� =
1

5�
�

��z�� + ��z� + ���z� , �38�

�� =
1

15�
��

������ + ����� + ������ , �39�

with � ,�=x ,y ,z.

B. Electric dipole moments

We first discuss the performance of the CCSD�R12� and
CCSD�F12� methods with ansatz 2 for the total electric di-
pole moments of the diatomic molecules. For comparison,
the standard CCSD and CCSD�R12� and CCSD�F12� results
using ansatz 1 are given in Table III. The correlation contri-
butions were calculated as the difference between the CCSD
�or CCSD�R12�/CCSD�F12�� and HF results, which are plot-
ted in Fig. 1. The approximate basis set limits were obtained
by adding the HF/t-aV5Z results to the CCSD basis set limits
for correlation contributions estimated from QZ-5Z extrapo-
lations according to Eq. �37�, since the HF dipole moments
�not given� have been observed to be converged within
0.0002 a.u. which is sufficient for the present purposes.

The comparison with CCSD reveals that the CCSD�F12�
model with ansatz 2 gives with the t-aVTZ basis dipole mo-
ments which are better converged than the t-aV5Z results for
the conventional CCSD calculation. The absolute deviations
from the CCSD basis set limits for correlation contributions

TABLE III. Total electric dipole moments for BH, BF, and CO molecules at the CCSD as well as CCSD�R12� and CCSD�F12� levels for both ansatz 1 �A1�
and ansatz 2 �A2�.

BH BF CO

CCSD

CCSD�R12� CCSD�F12�

CCSD

CCSD�R12� CCSD�F12�

CCSD

CCSD�R12� CCSD�F12�

A1 A2 A1 A2 A1 A2 A1 A2 A1 A2 A1 A2

t-aVTZ 0.555 0.558 0.560 0.558 0.562 0.341 0.339 0.338 0.338 0.335 0.0563 0.0528 0.0513 0.0524 0.0483
t-aVQZ 0.559 0.560 0.561 0.560 0.561 0.336 0.336 0.335 0.335 0.334 0.0504 0.0487 0.0479 0.0485 0.0472
t-aV5Z 0.560 0.335 0.0487
Approximate � 0.561 0.334 0.0471

-0.132

-0.128

-0.124

t-aVTZ t-aVQZ t-aV5Z

µ e
/B

H

-0.010

-0.007

-0.005

µ e
/B

F

0.155

0.160

0.165

µ e
/C

O

CCSD
CCSD(R12)/A2
CCSD(F12)/A2
CCSD(R12)/A1
CCSD(F12)/A1

approx. ∞

FIG. 1. Basis set convergence of the correlation contributions to total elec-
tric dipole moments �e for BH �bottom�, BF �middle�, and CO �top� di-
atomic molecules �in a.u.� using the t-aVXZ basis sets with triply augmented
diffuse functions. A1 and A2 stand for ansatz 1 and ansatz 2, respectively.
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are only 0.0002, 0.0009, and 0.0008 a.u. for BH, BF, and
CO, respectively. With t-aVQZ basis sets the CCSD�F12�/
ansatz 2 calculations lead to the results which are very close
to the estimated basis set limits and may even surpass their
accuracy. The CCSD�R12�/ansatz 2 results perform evidently
worse than CCSD�F12� in parallel with the observations for
ground state correlation energies. When the less accurate an-
satz 1 is applied, both CCSD�R12� and CCSD�F12� models
improve the basis set convergence by only one cardinal num-
ber compared to conventional CCSD.

C. Ne atom

The Ne atom is considered an instructive yet simple case
to study the �hyper�polarizability. The CCSD, CCSD�R12�,
and CCSD�F12� polarizabilities ��zz� and parallel average of
the second hyperpolarizability ���� are compared in Table IV
and Fig. 2. The explicitly correlated calculations in a basis
with the cardinal number X provide correlation contributions
to both �zz and �� with accuracies corresponding to standard
CCSD calculations with X+1 for ansatz 1 and X+2 for an-
satz 2 in the q-aVXZ hierarchy. For CCSD�R12�/ansatz 2
and CCSD�F12�/ansatz 2 the absolute deviations of �zz with
q-aVTZ are only, respectively, 0.004 and 0.007 a.u. from the
CCSD basis set limits, while for ansatz 1 the deviations are
as large as 0.02 a.u. for both the R12 and the F12 results.

Interestingly, as seen in Fig. 2 for the polarizability, the
CCSD�R12� model with ansatz 2 appears to give �zz closer

to the basis set limit than CCSD�F12�, which is opposite to
the trend observed for ground state correlation energies. But
such an effect is not seen for �� and CCSD�F12�/ansatz 2 in
a q-aVTZ set achieves an accuracy which is even better than
that of standard CCSD in a q-aV6Z set. There are at least
two factors that can possibly bias the CCSD�F12� results.
The selected � exponent in the F12 geminal function custom-
ized for ground state correlation energies may be not optimal
for polarizabilities and hyperpolarizabilities. In addition, the
accuracies of the results might now be limited by the con-
vergence of contributions from the singles excitations, which
are treated in the same one-electron basis set as in conven-
tional CCSD calculation.

D. BH molecule: A critical case

The BH molecule has been a critical case for assessing
the CCSD�R12� or CCSD�F12� response theory. The lack of
occupied orbitals with � symmetry in BH leads to a geminal
function that is not suitable to describe �→� excitations.
This limits the accuracy when excitation energies for excited
states with � symmetry12 and the xx component of the static
polarizability ��xx� �Ref. 14� are calculated, unless a few
pairs of virtual orbitals with � symmetry are included in the
construction of the geminal functions. However, this does
not necessarily affect the parallel components of the polariz-
ability ��zz� and the first and second hyperpolarizabilities ���

and ��� presented in Table V and Fig. 3. For �zz with t-aVTZ
basis CCSD�R12�/ansatz 2 gives an absolute deviation of
only 0.0006 a.u. from the basis set limit for the correlation
contribution. For �� and ��, the smallest deviations occur for
CCSD�F12� results with only about 1% and 6% errors with
respect to the basis set limit for the correlation contribution,
respectively.

E. BF, CO, and N2 molecules

We have carried out CCSD�R12� and CCSD�F12� calcu-
lations for BF, CO, and N2 molecules with the triple-� basis
sets and compared them to the standard CCSD results in the
t-aVXZ �X=T, Q, 5� hierarchy. The results for static �zz, �xx,
��, and �� are presented in Table V and Figs. 4–6. With the
CCSD�R12�/ansatz 2 model the basis set convergence is
rather accelerated for all components of the polarizabilities
and first hyperpolarizabilities. For CCSD�R12� the polariz-
abilities are with t-aVTZ basis converged at least as close to
the basis set limit as for conventional CCSD with the t-aV5Z
basis. But the CCSD�F12� calculations evidently underesti-

TABLE IV. Static polarizabilities �zz and second hyperpolarizabilities �� for Ne atom in a.u. at the CCSD as well as CCSD�R12� and CCSD�F12� levels for
both ansatz 1 �A1� and ansatz 2 �A2�.

Ne

CCSD CCSD�R12�/A1 CCSD�R12�/A2 CCSD�F12�/A1 CCSD�F12�/A2

�zz �� �zz �� �zz �� �zz �� �zz ��

q-aVTZ 2.702 114.5 2.683 111.8 2.669 110.1 2.681 111.7 2.658 109.0
q-aVQZ 2.686 111.2 2.677 110.0 2.670 109.2 2.676 109.8 2.667 108.7
q-aV5Z 2.676 110.2 2.670 109.5 2.669 109.4
q-aV6Z 2.671 110.0
Approximate � 2.666 109.3

0.28

0.30

0.32

0.34

q-aVTZ q-aVQZ q-aV5Z q-aV6Z

α z
z

40.0

42.0

44.0

46.0

γ ||

CCSD
CCSD(R12)/A2
CCSD(F12)/A2
CCSD(R12)/A1
CCSD(F12)/A1

approx. ∞

FIG. 2. Basis set convergence of the electronic correlation contributions to
static polarizabilities �zz and second hyperpolarizabilities �� for Ne atom
�in a.u.� using the q-aVXZ basis sets with quadruply augmented diffuse
functions. A1 and A2 stand for ansatz 1 and ansatz 2, respectively.
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mate �zz, �xx, and �� compared to the CCSD�R12� results,
which is similar to the above observation for the Ne atom.
Comparing BF to BH, we have found that CCSD�R12� in-
deed accelerates the basis set convergence of �xx. For BF the
occupied orbitals with � symmetry are automatically in-
cluded in the construction of the geminal functions, which
provides the required degrees of freedom for the correlation
contribution.

The obtained static second hyperpolarizabilities �� con-
firm the strength of CCSD�R12� and CCSD�F12� with ansatz
2: Already the calculations in a triple-� basis set give results
that are rather close to the basis set limits.

F. Frequency-dependent �¸ of N2

As example for frequency-dependent higher-order prop-
erties we computed the parallel average of the second hyper-

TABLE V. Static polarizabilities �zz and �xx and first and second hyperpolarizabilities �� and �� for BH, BF, CO, and N2 molecules in a.u. at the CCSD as
well as CCSD�R12� and CCSD�F12� levels for ansatz 2 �A2�.

BH

CCSD CCSD�R12�/A2 CCSD�F12�/A2

�zz �xx �� �� �zz �xx �� �� �zz �xx �� ��

t-aVTZ 23.005 20.995 64.657 10763.9 22.877 20.912 63.162 10614.7 22.814 20.867 62.141 10530.5
t-aVQZ 22.903 21.011 63.388 10642.2 22.846 20.980 62.629 10572.5 22.828 20.964 62.349 10547.5
t-aV5Z 22.868 21.015 62.905 10593.1
Approximate � 22.838 21.016 62.314 10539.8

BF

CCSD CCSD�R12�/A2 CCSD�F12�/A2

�zz �xx �� �� �zz �xx �� �� �zz �xx �� ��

t-aVTZ 18.146 20.050 53.529 6246.3 17.993 19.963 52.665 6156.2 17.933 19.926 51.830 6086.9
t-aVQZ 18.039 20.025 52.406 6172.2
t-aV5Z 18.002 20.014 52.130 6144.7
Approximate � 17.966 20.003 51.826 6111.3

CO

CCSD CCSD�R12�/A2 CCSD�F12�/A2

�zz �xx �� �� �zz �xx �� �� �zz �xx �� ��

t-aVTZ 15.712 11.880 25.255 1410.2 15.582 11.800 25.067 1375.5 15.532 11.762 24.808 1357.2
t-aVQZ 15.636 11.840 25.035 1381.6
t-aV5Z 15.606 11.824 24.978 1370.2
Approximate � 15.577 11.807 24.899 1359.3

N2

CCSD CCSD�R12�/A2 CCSD�F12�/A2

�zz �xx �� �zz �xx �� �zz �xx ��

t-aVTZ 14.676 10.187 907.7 14.574 10.114 883.0 14.538 10.079 872.4
t-aVQZ 14.629 10.153 890.8
t-aV5Z 14.605 10.137 883.3
Approximate � 14.584 10.123 874.2
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FIG. 3. Basis set convergence of the electronic correlation contributions to
static polarizabilities �zz and �xx and first and second hyperpolarizabilities
�� and �� for BH �in a.u.� using the t-aVXZ basis sets with triply augmented
diffuse functions. A2 stands for ansatz 2.
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FIG. 4. Basis set convergence of the electronic correlation contributions to
static polarizabilities �zz and �xx and first and second hyperpolarizabilities
�� and �� for BF �in a.u.� using the t-aVXZ basis sets with triply augmented
diffuse functions. A2 stands for ansatz 2.

074102-9 CCSD�R12� and CCSD�F12� for response theory J. Chem. Phys. 131, 074102 �2009�

 Reuse of AIP Publishing content is subject to the terms: https://publishing.aip.org/authors/rights-and-permissions. Downloaded to  IP:  147.8.204.164 On: Fri, 02 Sep 2016

07:00:47



polarizability for N2. The computed CCSD, CCSD�R12�,
and CCSD�F12� electronic second-harmonic generations
�ESHGs� ��

ESHG��� are given in Table VI for various
frequencies. The basis set limit at frequency � has been
estimated by a multiplicative scheme:

��
���� � ��

5Z��� ��
��0�

��
5Z�0�

� , �40�

where the ��
��0� is obtained by applying the extrapolation

scheme described in Sec. III A. This estimation is based on
the observation that the scaling factor for ���0� with d-aVXZ
and d-aVYZ basis sets can be approximately transferred to
�����. We note that with such a simple correction the basis
set errors of CCSD calculations can be estimated more accu-
rately for the low frequencies than for the higher ones.

The calculated ESHG results indicate that both
CCSD�R12� and CCSD�F12� models using ansatz 2 tremen-
dously improve the basis set convergence of the dispersion,
which are better than the CCSD/d-aV5Z values. The devia-
tions compared to the basis set limits are less than 10 a.u.
�i.e., less than 1%�. The largest deviation occurs for the
shortest wavelength example probably mainly because of a
larger numerical uncertainty of ��

���� estimated according to
Eq. �40� for short wavelengths. Moreover, the CCSD�F12�
results show a slightly larger deviation than the CCSD�R12�
ones, which implies again that the exponent in the Slater-
type correlation factor customized for the ground state cor-
relation energy may not be optimal for the calculation of
polarizabilities and hyperpolarizabilities.

IV. CONCLUSIONS

In this paper, the explicitly correlated methods
CCSD�R12� and CCSD�F12� with ansatz 2 have been gen-
eralized and implemented for calculating one-electron first-,
second-, third-, and fourth-order optical response properties,
and the implementations of response functions, left hand side
Jacobi matrix transformations, and perturbation-dependent
intermediate matrices have in the program package DALTON

been discussed. The most expensive steps occur for the C�,
D�, C�, and D� contributions with operation counts of a few
times O3V2�N�+V�.

As corroborated with what has been observed for ground
state correlation energies, the CCSD�F12� method with an-
satz 2 obtains correlation contributions to dipole moments
and second hyperpolarizabilities in a triple-� basis with an
accuracy which with conventional CCSD is first obtained in
a quintuple-� or larger basis set. The CCSD�R12� method
with ansatz 2 gives also correlation contributions to polariz-
abilities in triple-� basis sets with quintuple-� quality, while
CCSD�F12�/ansatz 2 has slightly larger errors due to an un-
derestimation of the polarization. Considering the correlation
contributions to ��, the CCSD�R12� and CCSD�F12� models
demonstrate variant relative performances that are interme-
diate between those for computing � and ��, i.e., the
CCSD�R12� results for �� are for CO better than, for BF
competitive with, and for BH less accurate than the
CCSD�F12� results. Possible remedies for CCSD�F12� may
be that the exponent of the Slater-type correlation factor ob-
tained for CCSD�F12� ground state calculations needs a
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FIG. 6. Basis set convergence of the electronic correlation contributions to
static polarizabilities �zz and �xx and second hyperpolarizabilities �� for N2

atom �in a.u.� using the t-aVXZ basis sets with triply augmented diffuse
functions. A2 stands for ansatz 2.
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FIG. 5. Basis set convergence of the electronic correlation contributions to
static polarizabilities �zz and �xx and first and second hyperpolarizabilities
�� and �� for CO �in a.u.� using the t-aVXZ basis sets with triply augmented
diffuse functions. A2 stands for ansatz 2.

TABLE VI. The dynamic ESHG second hyperpolarizabilities ��
ESHG��� for N2 in a.u. at the CCSD as well as

CCSD�R12� and CCSD�F12� levels for ansatz 2 �A2�.

Frequencies CCSD CCSD�R12�/A2 CCSD�F12�/A2

�

�nm�
�

�a.u.� d-aVTZ d-aVQZ d-aV5Z Estimate � d-aVTZ d-aVTZ

1055.0 0.043 188 956.5 943.4 937.2 926.7 929.2 918.2
694.3 0.065 625 1038.8 1023.0 1015.8 1004.3 1007.9 995.6
457.9 0.099 505 1272.3 1248.1 1237.8 1223.8 1230.6 1214.0
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more careful re-examination for response properties and the
contributions from the CC singles should be improved by
allowing excitations into the CABS space to reduce the re-
maining one-electron basis set error. However, already with-
out these possible improvements CCSD�F12�/ansatz 2 gives
overall first-order properties and polarizabilities and hyper-
polarizabilities in triple-� basis sets with accuracies which
are difficult to reach in conventional CCSD.
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