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Electronic Structure:
Hartree-Fock and Correlation Methods

Christof H attig

Lehrstuhl fur Theoretische Chemie
Fakultat fur Chemie und Biochemie
Ruhr-Universitat Bochum, 44780 Bochum, Germany
E-mail: christof.haettig@rub.de

Hartree-Fock theory is the conceptually most basic elaatretructure method and also the
starting point for almost all wavefunction based correlatmethods. Technically, the Hartree-
Fock self-consistent field method is often also the stanioigt for the development of molec-
ular Kohn-Sham density functional theory codes. We wileByi review the main concepts
of Hartree-Fock theory and modern implementations of thth&m-Hall self-consistent field
equations with emphasis on the techniques used to make dppseaches applicable to large
systems. The second part of the chapter will focus on waethmbased correlation methods
for large molecules, in particular second order MgllersBé& perturbation theory (MP2) and,
for calculations on excited states, the approximate calipligster singles-and-doubles method
CC2, both treating the electron-electron interaction exirthrough second order. It is shown
how the computational costs (CPU time and storage requitesnean be reduced for these
methods by orders of magnitudes using the resolution-@fidentity approximation for elec-
tron repulsion integrals. The demands for the auxiliaryidasts are discussed and it shown
how these approaches can parallelized for distributed mearohitectures. Finally a few pro-
totypical applications are reviewed.

1 Introduction

Today, essentially all efficient electronic structure noeth are based on the Born-
Oppenheimer approximation and molecular orbital theohe Martree-Fock method com-
bines these two concepts with the variation principle ardsimplest possible wave func-
tion ansatz obeying the Pauli exclusion principle: a Sldeterminant or, for open-shell
systems in restricted Hartree-Fock theory, a configuragtate function. In spite of the
fact that Hartree-Fock is since decades a matured quariemical method, its imple-
mentation for large scale application is still today anwafield of research. The reason
for this is not that there is a large interest in the resutisifthe Hartree-Fock calculations
themselves. The driving force behind these developmeatday the technical similar-
ity between Hartree-Fock (HF) theory and Kohn-Sham derisitgtional theory (DFT),
in particular if hybrid functionals are used, and the faeittHartree-Fock calculations are
the starting point for almost all wavefunction based catieh methods. The challenge for
HF and DFT implementations is today an efficient prescregoirthe numerical important
contributions and the storage of sparse matrices in largje parallel calculations.

During the last decade also many wavefunction based ctioelmethods have been
proposed for applications on extended molecular systenost bf them are based on the
so-called local correlation approdcf) and/or on an extensive screening of small but of-
ten long ranging contributions to the correlation enérfy' Some approaches introduce
empirical parameters or rely on a balance between certaitribotions which in prac-
tice might or might not be givéd™*% For most of these approaches it is not yet clear to
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which extend they can be developed in the near future intopesitive methods for ex-
tended systems. In particular, if the reduction of the cotafenal costs (compared to
more traditional implementations of quantum chemical md#)) relies on a screening in
the atomic orbital (AO) basis set, calculations on extersystems are often only possible
with rather small basis sets which cannot supply the acgurrpected from a correlated
ab initio method® Even though usually only explored for electronic groundestamost
of these approaches could in principle also be generalzeddited states. But for larger
molecules, calculations for excited states employ oftecaied response methods and the
parameterization of the excited state used in these mettadpers the application of the
local correlation and related approach&d®

We will in the following not go into the details of these appcabes, but restrict our-
self to discussion of to the underlying electronic struetorethods, which are usually
single-reference coupled-cluster (CC) and, in particditarlarger systems Mgller-Plesset
perturbation theory through second order (MP2) or relatethods for excited states. The
implementation of the latter methods has during the lasade@nproved dramatically by
combining them with the so-called resolution-of-the-itign(RI) approximation for the
four-index electron repulsion integrals (ERIs) with optied auxiliary basis sets. Even
without any further approximations are these methods tag@icable to systems with up
to 100 or more atoms. Since the Rl approximation depentisditt the electronic structure
of the investigated system it does not diminish the appiiitabf the underlying electronic
structure methods. It is also compatible and can be combiritbdthe above mentioned
screening based approaches to reduce further the congmatiatosts? 2° Thus, it can be
expected that these two aspects, the treatment of the@temrrelation through second
order and the RI approximation for ERIs will remain impottargredients also in future
correlated wavefunction based methods for extended sgstem

In the following the theory of wavefunction based ab initietimods that treat the
electron-electron interaction correctly through secordeois briefly reviewed. The em-
phasis will be on methods for excited states which can beeelt the approximate
coupled-cluster singles-and-doubles model CC2, an appedion to the coupled-cluster
singles-and-doubles method (CCSD). In Sec. 7 it is shown theacomputational costs
for these methods can be reduced drastically by using theitbaimation and disc space
bottlenecks for these methods can be resolved by an douh@gades-direct implemen-
tation. A recent parallel implementation for distributedmmory architectures is presented
in Sec. 8 and some example applications with RI-MP2 and R2-@f@ reviewed in Secs.
9 and 10.

2 The Born-Oppenheimer Approximation and the Electronic
Schrodinger Equation

An important simplification in the quantum mechanical dggmn of molecules, which
is ubiquitously applied in electronic structure calcudas is the Born-Oppenheimer (BO)
approximation which leads to a separation of the electrénim the nuclear degrees of

8Here and in the following we use “ab initio” for electroniaistture methods which are systematically improv-
able in the sense that they are members of a hierarchy whiorerges to the exact solution of the electronic
Schrddinger equations, i.e. the full configuration intéin (Full CI) limit.
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freedom. In the BO approximation the total Hamiltonian oflecailar system is split in
the operator for the kinetic ener@y; .. gf the nuclei and the remaining contributions which
are put into an electronic Hamiltonidt,; .

Ifltot - Tnuc + Hel (1)
In the non-relativistic case we have
N 1 -
Tnuc = - VQ 2
§ L @

and the electronic Hamiltonian can be written in atomicsiag
ZA 1 YAVA:
r,R) + 3
o) = =35V Y e e o R Rl ©

whereV 4 andV; are the gradients with respect to the coordinates of nuclearsd elec-
troni, respectivelyR 4 andr;, andZ 4 the charge of nucleud.

The total wavefunction is approximated as product of antedaic and a nuclear wave-
function

\I]tot(rz R) ~ \I]el (I’, R)\I]nu((R) . (4)
where the electronic wavefunction is determined as eigestion of the electronic Hamil-
tonian

f{el (I‘, R)\Ilel (I‘, R) = Eel (R>\Ijel (I‘, R) ) (5)

and the nuclear wavefunction as solution of a nuclear Stihgér equation
(Tnuc + Eel (R)) \I]nuc(r; R) = Etot\I]nuc(r; R) ) (6)

in which the eigenvalues of the electronic Hamiltoniap,(R.), appear as potential for the
nuclear motion. It is therefore that we speakif(R) as potential energy surfaces. Our
understanding of molecular structures as equilibriumtfmss on potential energy surfaces
are implicit results of the Born-Oppenheimer approximatio

One may ask, what are the errors of the BO approximation? dBakie simplified

wavefunction ansatz, Eq. (4), one neglects the so-callaeadiabatic coupling eleme

AW (R) = / Woa(r, R) (VaWa(r, R))dr )
BA(R) = / V(e R) (VA 0a(r, R))dr ®8)
There appear if the total Hamiltonian is applieditg,;,
I;Itot\lltot = Hel\llel (I’, R)\I]nu((R) + lIjel(ra R)TnU(\Ijnuc(R) (9)
1 y v &9
- % 2MA {2 (VA\I]el (I‘, R) . (VA\I]’ILU((R)) + (VA\I/el (I‘, R) \IINU((R)}
= Etot\Ijtot )

bNote thatA(4) (R) is a three-dimensional vector in the coordinate space ofensci, while B(4) (R) is
scalar.
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after integration over the electronic degrees of freedom:

IA{tat\I]nuc = (Tnuc + Eel(é)) \Ijnuc (10)
Tu
= 2M 4

The nuclear Schrodinger equation in Eq. (6) is obtaineddgletting in the last equation
the non-adiabatic coupling elemems“)(R) and B(Y(R). The errors introduced by

the Born-Oppenheimer approximation are typically in theeorof 0.1 kJ/mol and for the

majority of applications today completely negligible coangd to other errors made in the
solution of the electronic and nuclear Schrodinger eguatiEgs. (5) and (6).

{[2AD®R) - Vi + BOR)} Voe = Buor Ve

3 Slater Determinants
The Pauli principle requires that the electronic wavefiorct; is antisymmetric under
any permutation of two electrongndj,

Pij\Ilel(rl, BORPS F PRI P ) = \I/el(rl, BORES Y PERES P ) (11)

:—\Ilel(rl,...,ri,...,rj,...).

3

The simplest ansatz fulfilling this condition are Slateredetinants, antisymmetrized prod-
ucts of one-electron wavefunctions (orbitals):

Usp = = Ada(r1) . a(rn) = | : : : (12)
1/)n(rl) 1/’71(1'2) ¢n(rn)

The non-symmetrized orbital products are also known asrétagroducts and will in the
following be denoted by.

Usp = =A6  with O(ri,...,r0) = ¥i(r1) ... ¥n(rs) (13)

The antisymmetrized is defined as
n!
A - Z Sign(Pm)Pm (14)
m=1

where P,,, is an operator which performs one of thé possible permutations of the
electrons andign(FP,,) the parity of this permutation. The group permutation opera
tors has the property that if the whole set of @llpossible permutations of elements

{Pl,PQ, .. Pn|} is multiplied with some permutatloﬁ’;c the same set of operators is
recovered just in a different order
(PP, PyPs,... PPy} ={P, P, ..., P} . (15)
Furthermore, the permutation operatés are unitary
Pl =P, (16)

CThis relation is in group theory known as rearrangementrérao
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WherePn;1 is the operator which performs the inverse permutation wihias the same
parity asP,,, i.e.sign(P,,) = sign(P,,!) and

(PP Py =P, Py, Pa}. (17)
From these relations it follows that the antisymmetriﬁeis an hermitian operator

sign(P, PT = s1gn =A, (18)
=2

and
A2 =nlA. (19)

Both relations are useful for evaluating matrix elememite@rals) for slater determinants.
In the following we skip for convenience the indekfor the electronic Hamiltonian and
write it as

z<]

with the nuclear repulsion energy and the one-electron lb@aman defined as

ZaZ
Bowe= ) e (21)
i Ra—Rp|”
and
; 1. Za
h;=—=V?— — 22
5V ;RA_”', (22)

and the interelectronic distances = |r; — r;|. Note that, because the summations are

over all electrons or electron pairs, the antisymmet[iﬁemmmutes separately with the
one- and two-electron contributions to the Hamiltoni&n

1<J

= A Z — (23)

Tz] i<j Tij

For operators of this form we can rewrite the matrix eleméntSlater determinants as

(¥sp,1|O01¥sp,s) = <L/A1@1
= L(4%6,|0

Ol 540,) = H(Ae;
) = (desl0]e.)

AO

0s) (24)

The results have, however, only a simple form if the orbitalsaare orthogonal to each
other. We will therefore in the following without loss of gemality assume thab; and© ;
are build from a common set of orthonormal orbitals

(Wilhy) = 04 (25)
and that the orbitals are ordered in the Hartree productsrdity to increasing indices:
@[ :1/)[1(1‘1)1/)]2(1‘2)...1/)]71(1‘”) with LH<Ilh<...<I, (26)
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Overlap integrals then become

n n! n
(Aer]e,) = ZSIgn Po) [TWre, 0105 = sien(Pu) [ 616000 R7)
k=1 m=1 k=1

whereP,, (k) is the result at positiok after applying the permutatioR,, because of Eq.
(26) only the identity permutation can contribute to theuteshich is nonzero only if in
both Hartree products exactly the same orbitals are ocdul¥e thus find that

(Usp,1|Vsp,s) = (AO;|0,) = b1.4 (28)

Similarly, one obtains for the matrix elements of one-etatbperators:

n
(A04] > " hile) = Z sign(P, Z Vg, o lhils) [ @, l00) - (29)
' =1 =
For an orthonormal orbital basis the matrix elements betvtie Slater determinants thus
become:

> (Wr, |helipr,) for I =7
k=1

(Wsp.a| 2 hil¥sp.s) =9 (yfifin)  if Wsp s, Wsp,, differ only in by ¢
3
0 otherwise
(30)
Nonvanishing matrix elements are obtained if the two Sldéterminants are identical or
differ at most in one orbital. The matrix elements for the {&lectron operators become:

(Vsp,1] Z % |¥sp,s) = <A@1| Z % |©.) (31)
i<j i<j
- Z Slgn Z Q/JIpm(i)?/JIpm(]) Tij szij>
1<j
H 'l/JIpm(k) |1/1Jk 9
k;;z 7

which reduces for orthonormal orbitals to:

ZWIWIZHWWIZ) forI =.J

k<l
if \I/SD,[7\I/SD,‘] differ
(Wsp1] Z s zm:<1/)k1/11m [Yitbr,,) only in ¢y, ¥ (32)
i<j if \IISD,I7\IISD,J differ

Watsllonvn) gy, o ands;. v,

0 otherwise
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For two-electron operators non-vanishing matrix elemargsobtained for Slater determi-
nants which differ in up to two orbitals. The antisymmetdaetegrals introduced on right
side of Eq. (32) are defined as:

(Wil = (Vie|vjn) — (Wit |hjvdn) (33)

with the two-electron integrals in the Mulliken notatioven by

ston = [ [ wreese) et dndre . (3)

The expectation value of the total electronic Hamiltoniang Slater determinant with the
orthonormal occupied orbitals, , . . . , ¢, is thus given by:

(Usp|H|[Vsp) = Enue + Z (i h|s) + % Z (Pioj || ity - (35)

)

4 Hartree-Fock Theory and the Roothaan-Hall Equations

The basic idea behind Hartree-Fock theory is to take thelsshmeaningful ansatz for

the electronic wavefunction, a Slater determinant, andeterthine the occupied orbitals
by the variation principle, i.e. such that energy expegatatalue is minimized. For general
molecular or extended systems this scheme is usually cadliith a basis set expansion
of the molecular orbitals.

PR Jo)
¥i(1) —ny(r1)0m~ (1) ) (36)

where{x, } is a basis set witliV spatial functions and und 3 are spin function for, re-
spectively, the “spin up” and “spin down” states. For ex&hdystems often plane wave
basis sets is used, but for molecular systems local atonerhbasis setsifear combi-
nation of atomic orbitalsLCAQO) are more common.

To minimize the Hartree-Fock energy with respect to the Méffidentsc, ; under the
constraint that the); are orthonormal we introduce the Lagrange function,

Lyr = Enue + Z <Z‘h|l> + 5 Z <’LjHZ]> + ZEji((Sij — <Z|j>) . (37)
) 1] 1]

Here and in the following we skip for notational convenietteefunctiong) andy in the

brackets and give only there indices with the conventiohithg . . . denote occupied MOs

and greek indices AOs. The Lagrange functiofr is now required to be stationary with

respect to arbitrary variations of the MO coeffici¢hts

dLur

ac, <”V‘“>+;<V’“Hik>*Z%@W =0. (38)

J

dRequiring the derivatived Ly /dC,; to vanish leads to equivalent complex conjugated equations
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We now introduce the Fock and overlap matrices in atomidalrbasis{y, } as:

Fo={(p h v) + Z <,ukH1/k:> (39)
k
- <M|B‘V>+ZD,{)\{(MV|H>\) — (;L)\|m/)} , (40)
KA
and
S = (nlv) (41)
with AO density matrixD defined as:
Dy = Z CrrCxi - (42)
k

Note that the Hartree-Fock energy can be calculated frorfrdle& and densities matrices
and the matrix of elements of the one-electron hamiltohian= (u|h|v) as

Eyp = % > D (B + Iy ) - (43)
Hnv

With these intermediates Eq. (38) can be rewritten in a catpatrix form:
FC = SCe.. (44)

The last equation is known under the name “Roothaan-Haloni'. Its meaning be-
comes more clear if it is transformed to an orthonormal bsedis

%= 0[S, with STV/28712—g1, (45)

where[S~1/2],,, denote§ the element, v of the matrixS—'/2. In this basis the Roothaan-
Hall equations become

Y FuCui=> Cuei  with F=8"'"?FS™'/? and C=8"?C. (46)
v J

The result of the Fock matrix applied any occupied orbita imear combination of only
occupied orbitals. This condition determines the occupietecular orbitals only up to a
unitary transformation of these orbitals among themsehwbich leaves the Slater deter-
minant, i.e. the Hartree-Fock wavefunction, unchanged.

The so-called canonical orbitals are obtained by choosiisgunitary transformation
such that the matrix with the lagrangian multipliers becomes diagonal. Usually, the
equation is then augmented by a similar condition for the mlementary space of un-
occupied or “virtual” orbitals. The Roothaan-Hall equatdecome then a generalized
nonlinear eigenvalue problem—nonlinear since the Fockim#t depends through the
density matrixD on the solution of the equations. The standard algorithnokeeshese
equations is the self-consistent field procedure which easkbtched as follows:

1. Initially a start density matrix is guessed (or consteddrom some start orbitals, e.g.
from an extended Huickel calculation)

eNote that[S—/2],., # 1/1/Spw-
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2. The Fock matrix" and the total energy for the approximate density matrix ateuc
lated using Eqs. (39) and (43).

3. The generalized eigenvalue problem Eq. (44) is solvedtain a new set of MOs.

4. An improved density matrix is guessed from the presentagdmation for the MOs
and the previous density matrices using some convergeoeteaation procedure.

5. If the total energy, the MOs and the density are convergeddelf-consistent) the
procedure is stopped, else one continuous with step 2.

The number of iterations needed to converge the self-cemsiield procedure depends on
the molecular system (in particular its HOMO-LUMO gap), theality of the start guess
and a lot on the method used to update the density matrix n4stéd common choice is
the direct inversion of iterative subspaced (DIIS) techrigf Pulay® 22

5 Direct SCF, Integral Screening and Integral Approximations

Apart from the technique used to solve the Roothaan-Halatojus, i.e. to update the
density matrix, a second technically demanding aspectasctinstruction of the Fock
matrix. A naive implementation of Eq. (39) would require ttaéculation ofx %N‘* two-
electron integral, wheréV is the dimension of our basis set in Eqg. (36). To achieve a
useful accuracy, typically 10-30 basis functions are neégue atom. For many systems
of interest in computational chemistry today with 100 anderetoms the number of two-
electron integrals will even today exceed standard discespapacities. Furthermore, a
brute force summation over all integrals would be unnecgssastly in terms of CPU
time: for local atom-center basis sets many of the two-ededntegrals and, depending on
the HOMO-LUMO gap, also of the density matrix are numericakgligible; in extended
systems the number of numerically significant two-electtonlomb integrals will only
grow with O(A?), where\ is a measure of the system size. A solution to these problems
is offered by the integral-direct SCF scheme in combinatigh integral prescreening:

e The two-electron integrals are not stored once on stored len fiut instead
(re)calculated when needed and immediately contractdtthét elements of the den-
sity matrix to increments of the Fock matrix. By exploitingeteightfold permuta-
tional symmetry

(uv|kA) = (vp|rA) = (uv|Ak) = (vp|Ak) = (47)
(k) = (KAlvp) = (Ak|pv) = (Ak|vp) (48)

of the two-electron integrals, one can restrict the loopr ¢lve AO indices tqu < v,
andx < A with (u,v) < (%, ) and add for each two-electron integral the following
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6 increments to the Fock matrix:

Fuw — Fuu + 2D (pv|kN) (49)
Fix — Fox 42D, (uv|cX) (50)
Fux < Fux — Dyw(pv|sA) (51)
Fux — Fux — Dye(pln) (52)
Fur — Fus — Dux(pv|kA) (53)
F,. — F,x — Dux(uv|sX) (54)

(Where we assumed for simplicity that all four AO indices different, else the
redundant increments have to be skipped.)

e To estimate whether a specific integral might be large endoghake a significant
contribution to the Fock matrix one exploits e.g. the Schveamdition

(|kN)] < QuQur  With  Quu = \/(uv|uw) . (55)
For a given index quadruple the integfal’|xA) needs only to be calculated if
QuvQrrDimaz > T (56)
where
Diae = max{2|Dyy|, 2| Deal; [Dukls | Dyxl,s [Duals [Duxl} (57)

andr is a user-defined threshold that determines the numericatacy of the calcu-
lation. Only if the inequality is fulfilled any of the conttitions to the Fock matrix in
Egs. (49) — (54) can become larger than the thresholthis technique is today stan-
dard in essentially all direct Hartree-Fock codes and alsonalecular DFT codes for
so-called Hybrid functional with an Hartree-Fock-like &t exchange” contribution.

For large systems the integral-screening reduces the datignal costs for the Fock ma-
trix construction fromO(N*) to O(N?). If we split the two-electron part of the Fock
matrix into separate Coulomb and exchange contributions,
Fuu:huy"f'Juu_Kuu; (58)
with
JM’/ B ZDH/\(IU,VV;)\) , and KMV = ZDH/\(,U/)‘VU/) ) (59)
KA KA

the remainingD(N?) scaling is caused by the Coulomb contribution while for tke e
change part the integral screening reduces the number wfesaontributions asymptot-
ically to O(N) if the HOMO-LUMO gap does not vanish and the density matrizdmees
sparse. This becomes more clear if the param@igg,. for the Coulomb and exchange
contributions to the Fock matrix are calculated separately

Coulomb:  Dyyaz,c = max{2|D,.|,2|Dx|} (60)
exchange:  Diaq,x = max{|Dyl,|Duxl, | Durl, |Duxrl} (61)

fThe Schwarz condition for two-electron integrals is a splecase of a Cauchy-Schwarz inequality for scalar
products in vector spac¢z, y)| < [|z|| - ||y|| with ||z|| = /(z, z).
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The size of the absolute values of the density matrix elesnBpt and of the quantities
Q. are correlated with the overlap of the basis functignsand x,. Thus, Dy,qz,c
becomes usually only small if also the integfiglv|x))| < Quu - Qwx is small, while in
the exchange case the density matrix elements contribtdity,,.., x have indices then
the @’s and criterionQ ., Q . » Dmaa, x Will only be fulfilled if all four basis functiong.,
v, k, and\ are close in space.

Also, for medium sized molecules or with basis sets whichta@iordiffuse functions
only modest computational savings obtained with this tepl and the large costs for
the individual two-electron integrals can hamper the ayalility of Hartree-Fock self-
consistent field calculations. An approximation which ke&dl a significant reduction of
the computational costs for the Coulomb contribution toFleek matrix construction is
the resolution-of-the-identity approximation for the telectron integrals which is also
known as density fitting:

(uv|wX) = (1|Q) [V~ Hqp (PlrA) (62)
where(ur|Q) andVpg are, respectively, three- and two-center two-electroggirals:
1
(1) = [ [ ae)xuez) 2 Qlra) drrdre. (63)
R3 JR3 T12
1
VPQ = (Q|P) :/ / P(I’l)—Q(I‘g)drldrg . (64)
R3 JR3 T12
Within this approximation the Coulomb matrik,,, can be calculated as:
vp =Y _(P|kA) Dy (65)
KA
Z VPQCQ =P (66)
Q
T = > (1|Q)eq (67)
Q

Where Eq. (66) is linear equation system#gr. In combination with an integral screening
based on the Schwarz inequality these three equations sarbalimplemented with an
asymptotic scaling o (N\?), but a significant lower prefactor than the original method,
since there are fewer two- and three-center two-electrtagials and the computational
costs for them are lower than for the four-center two-etecintegraly uv|x\). We opti-
mized auxiliary basis set§}, which are today available for several standard basis sets,
the errors introduced by the RI approximation are insigaiftccompared to the basis in-
completeness error of the LCAO expansion in Eq. (36).

6 Second Order Methods for Ground and Excited States

Second order Mgller-Plesset perturbation theory is a qunedy simple and technically
the most simplest ab initio correlation method. It can bévéerby expanding the solution
of the electronic Schrodinger equation as a Taylor serig¢ke fluctuation potential (vide
infra). This can be done either in the framework of configorainteraction theory or
using the single-reference coupled-cluster ansatz forivefunctior?® We will take here
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the latter starting point to have a close connection to axsluster response and related
methods for excited states. In the coupled-cluster ansatwavefunction is parameterized
as

|CC) = exp(T)|HF) (68)
with the cluster operator defined as
T=T+To+T5+... (69)
where
Ty =ty = Zta P Ty = tutu =D thFa, .. (70)
H1 M2 aibj

The coefficients,,, are called cluster amplitudes and the excitation operaigrgener-
ate all possible single, double, and higher excited deteants if applied on the ground
state Hartree-Fock (HF) determindHtF). Here and in the following, we use the conven-
tion that indiceg, 7, ...denote occupied, b, ...virtual, andp, ¢, ...arbitrary molecular
orbitals (MOs).

Inserting the ansatz (68) into the electronic Schrodiegemation and multiplying from
the left withexp(—1") one gets

exp(—T)H exp(T)|HF) = E|HF) . (71)
Projecting the above form of the Schrodinger equation ahéoHF determinant and a

projection manifold of (suitable linear combinations ofrited determinants one obtains
an expression for the ground state energy

E = (HF| exp(—T)H exp(T)|HF) = (HF|H exp(T)[HF) , (72)
and the cluster equations
0 = (il exp(~T)H exp(T)[HF) , (73)

which determine the amplitudeg,. Since we have not yet made any approximation, the
above equations still give the exact ground state solutiotihe electronic Schrodinger
equation. Truncating the cluster operator (69) after thglsi(Z}) and double(») excita-
tions gives the coupled-cluster singles-and-doubles @@&ethod, truncating it aftefs
the CCSDT method, and so &n.

Expressions for Mgller-Plesset perturbation theory avadioby splitting the Hamilto-
nian into the Fock operatdt as zeroth-order and the electron-electron fluctuationniae
as first-order contribution to the Hamiltonian

HO—F, AV _—b—fF-F, (74)
and expanding Eqs. (72) and (73) in orders of the fluctuatatemgial. If the Brillouin-

Theorem is fulfilled and’, | H|[HF) = 0, i.e. for a closed-shell or an unrestricted open-shell
Hartree-Fock (UHF) reference, the MP2 energy is obtained as

Enps = (HF|OTSV|HF) = 3~ ¢ (HF || (75)

aibj

9Similar as in configuration interaction theory, a truncatigter single excitations (CCS) does not give a useful
method for the calculation of ground state energies. As¥el from the Brillouin theorent’, | H|HF) = 0,

the cluster equations have then for a closed-shell or arstrioted open-shell reference determinant the trivial
solutiont?, = 0 and the CCS energy becomes equal the HF energy.
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with
(4| ®|HF)

0= (F, TV + dHF) o 9 =—"291 1
<z][72]+ | > ab €i_6a+€j_€b

(76)
where we assumed canonical molecular orbitalsearatte the orbital energies.
Mgller-Plesset perturbation theory can not straightfodiyabe applied to excited
states, since wavefunctions for excited states usuallyireq multi-reference treatment.
For reviews on multi-reference many-body perturbatiomtii@nd its application on elec-
tronically excited states see e.g. Refs. 24,25. Correldednd order methods for the cal-
culation of excitation energies based on a single-referéneatment for electronic ground
states can, however, be derived within the framework of tlipluster response theory.
The idea behind response theory is to study a system expodedd-dependent exter-
nal (e.g. electric) fields and to derive from the responseéhefwavefunction or density
the frequency-dependent properties of the system—for pleapolarizabilities and hyper-
polarizabilities. The latter properties have singulastivhenever a frequency of a field
becomes equal to the excitation energy of an allowed tiangit the system. Thus, from
the poles of frequency-dependent properties one can fyéingi excitation energies.
Consider a guantum mechanical system described in thetuniped limit by the time-
independent Hamiltonidh/7(© which is perturbed by a time-dependent potential:

H(t,e) = HO + V(t,e). (77)
We assume that the perturbatiBrcan be expanded as a sum over monochromatic Fourier
components

V(t,e) = Z‘A/jeje_iwft , (78)
J

Wheref/j are hermitian, time-independent one-electron operagogs for an electric field
the dipole operator}, the time and:; are the amplitudes of the associated field strengths.
Then the full time-dependent wavefunction of the system, the solution to the time-
dependent Schrodinger equation, can be expanded as a pesies in the field strengths
as

W) = [\1,«)) +Z\I,§1>(wj)€jewjt+___} ¢ Iy V@I =i W) (7g)

J

phase-isolated wavefuncti@n

and an expectation value for an opergias

) () = (FOIANTE) = 1O + 3 (s Vi eje 0 4 (80)
j
For detailed reviews of modern response theory and its im@hgation for approximate
wavefunction methods the interested reader is referreéts. R6—-31. The important point
for the calculation excitation energies is that the polethéresponse functiong:; V).,
occur whenw becomes equal to an eigenvalue of the stability matrix ofeimployed

r]Note thatd () includes here the fluctuation potential in difference to @d), where the fluctuation potential
® has been the perturbation.
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electronic structure method for the unperturbed systene stability matrix contains the
derivatives of the residua of the equations which deterrttisevavefunction parameters
with respect to these parameters. For Hartree-Fock, maitfigurational self-consistent
field (MCSCF), density functional theory (DFT), configumatiinteraction (CI) or other
methods which are variational in the sense that the wavdmparameters are deter-
mined by minimization of the energy, the stability matrixti® so-called electronic Hesse
matrix—the matrix of the second derivatives of the energyhwespect to the wavefunc-
tion parameters. For coupled-cluster methods the clustplitudes are determined by the
cluster equations (73). Arranging the residua in a vectoction

Qs (tw,) = (pal exp(=T)H exp(T)[HF) , (81)
the stability matrix is given by the Jacoby matrix
sy, A .
Ay = 22| = (il exp(~T)[H 7, ] exp(T)|HE) , (82)
Vi le=0

where|.—( indicates that the derivatives are taken for the unpertlgystem, i.e. at zero
field strengths. In configuration interaction theory thé#ity matrix becomes the matrix
representation of the reduced Hamiltonfdn- £y, (WhereE), is the ground state energy) in

the space orthogonal to the electronic ground étantecogpled-cluster theory this matrix

representation is obtained in a similarity transformedddas

In this way excitation energies can in principle be derivedany electronic structure
method. However, to obtain physical meaningful and aceuradults, the method has to
fulfill certain requirements. For example from the equatiéor the amplitudes in MP2,
Eq. (76), one obtains a Jacoby matrix which gives only ekoiteenergies corresponding
to double excitations and these would be equal to the orbitatgy differences in the de-
nominator of the amplitudes. The two most important reqaaets are firstly, that there
must be a one-to-one correspondence between the pararmoktees wavefunction and
at least the investigated part of the spectrum of the Hamdto This requires methods
which determine the time-dependent variables by a sindlefsequations, as e.g. time-
dependent Hartree-Fock (HF-SCF), density functionalth@oFT) or multi-configuration
self-consistent field (MCSCF, CASSCF, or RASSCF), but natetdependent configu-
ration interaction (Cl) treatment on top of a time-depernd#f SCF calculation. For this
reason the coefficients of the Hartree-Fock orbitals are at®ve in Eqgs. (81) and (82)
not considered as parameters of the time-dependent wastefapsince this second set of
variables in the time-dependent problem would lead to arskeet of eigenvalues corre-
sponding to single excited states, additionally to the drmeioed from the parameteriza-
tion through the singles cluster amplitudes. Instead,ithe-tiependent wavefunction is in
coupled-cluster response theory usually constructedyubim (time-independent) orbitals
of the unperturbed system with time-dependent cluster itudgls. Secondly, to obtain
accurate results the stability matrix must also provide ecugate approximation of the
those blocks of the Hamiltonian which are most importantii@r investigated states. For
single excitations these are the singles-singles blagk,, and the off-diagonal blocks

'In connection with CI and propagator methods (approximataiix representations df — Eq are often also
referred to as secular matrix.

j(ui\ exp(—1) for the bra andaxp(T)mj) for the ket states, whergi;) = 7, |HF); for further details see
e.g. Ref. 23
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A,,,, andA, ,» nextto it. With the usual single-reference coupled-clustethods
these blocks are described most accurately and therefexttitation energies for single
excitation dominated transitions are obtained with thénbgg accuracy, while excitation
energies for double and higher excitations are usuallyiderably less accurate.

Already at the coupled-cluster singles (CCS) level (whimhexcitation energies is—
in contrast to ground state calculations—not equivalehtadree-Fock, but to configura-
tion interaction singles (CIS)), excitation energies fatas dominated by single replace-
ments of one spin-orbital in the Hartree-Fock referencerdehant are obtained correctly
through first order in the electron-electron interaction.

A second order method for excited states which accounth@above requirements
and takes over the accuracy of MP2 to excited states dondibgteingle excitations can be
derived by approximating the cluster equations to lowesénin the fluctuation potential.
But in difference to the derivation of MP2 in Egs. (74) — (76) allow in the Hamiltonian
for an additional one-electron perturbation

Ht)=F+d+V(t), (83)

which can induce transitions to single excitations and hasecessary in CC response
theory, not been included in the Hartree-Fock calculatiBecause of the latter, single
excitation amplitudes contribute now to the cluster opmratready in zeroth order in the
fluctuation potential®, and in first orderl}; and 7% both contribute to the wavefunc-
tion. Approximating the equations that determine theseliéindes to second (singles) and
first order (doubles) one obtains the equations for the aqipiate coupled-cluster model
cc2233

(9|[H, Ty] + HI|HF) , (84)

0
0 = (|[F, T3] + H|HF) (85)

where a similarity transformed Hamiltonidt = exp(—17})H exp(1}) has been intro-

duced to obtain a compact notation. In difference to MP2 theadons for CC2 have to
be solved iteratively because of the coupling introduced’hy The ground state energy
obtained from CC2

Eccs = (HF|®(Ty + 1T1T1)[HF) , (86)

is, as for MP2, (only) correct through second order in thetflaton potentié‘i, but it
leads to a Jacoby matrix with the singles-singles blAgk,,, correct through second order
and the off-diagonal blocka. ,,,, andA,,,,, correct through first-order in the fluctua-
tion potential, while the doubles-doublas,,,,, block is approximated by the zeroth-order
term:

P FEE) (|, 75| HF)
CC2 is the computational simplest iterative coupled-eustodel which gives single exci-

tation energies which are correct through second ordenulgir the similarity transformed

oo _ <<g|[(ﬁ+[ﬁ,fg]),%,s|HF> <$|[ﬁfﬁfl]IHF>> | &)

kTherefore, CC2 does in general not describe ground statgiesgstructures, or properties more accurately
than MP2. Its advantage upon MP2 is that, combined with @lipluster response theory, it can (in contrast to
the latter) applied successfully to excited states.
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HamiltonianH = exp(—11)H exp(1}) the Jacoby matrix in Eq. (87) includes, however,
also some higher-order terms, since for the unperturbedmsythe single excitation ampli-
tudest,,, contribute only in second- and higher orders to the groualtdasrt/avefunctiorll.
Excluding these terms and replacing the doubles amplitbgdise first-order amplitudes,
Eq. (76), from which the MP2 energy in calculated, one olstdire Jacoby matrix of
the CIS(D,,) approximatiofd’, an iterative variant of the perturbative doubles coroeefi
CIS(D) to CIS (or CCS):

ACIS(De) (<?|[(H + [HvTQ])a 7A_li|HF> <f|[l‘{,f'ﬁi]|HF> ) ) (88)

(e2|[H, 7¢)[HF) (@7 |[F, 77| HF)

This Jacobian contains the minimal number of terms requirethtain the excitation ener-
gies for single replacement dominated transitions cotheough second order. However,
it is not possible to construct a coupled-cluster model Wieéads exactly to such a Jacoby
matrix.

The computational savings of CIS{D) compared to CC2 are rather limif€dind CC2
has, as a member of the hierarchy of coupled-cluster metB@& CC2, CCSD, CC3,
CCSDT,. .. certain conceptual advantages. The Jacoby matrix of théDGtS approxi-
mation may, however, used as starting point to derive theigeative doubles correction
CIS(D) to the CIS (or CCS) excitation energiés

ACIS(Dec) 4 CIS(Dec)
D) _ CIS 1k
w® =>"EJ!

2 R2V1

ESHS (89)

CIS(Dos) _ A CIS
A#ll/l A#ll’l + Z WwCIS _ ¢
K2
H1v1 K2
or
ACIS(Dec) p CIS(Doo)
CIS(D) __ , CIS (D) _ CIS | A CIS(Doo) paka Kav1 CIS
w =w tw - Z EMl AMlVl + Z WwCIS _ ¢ EV1
pivy K2 2

. (90)

wheree,, contains the orbital energy difference for a double exicitakfjb = €q — € +

€y — €5.

Another second order method for excited states which ise@l®m CC2 and CIS(D) is
the so-called algebraic diagrammatic construction thinegcond order, ADC(ZP:4° The
secular matrix of ADC(2) is just the symmetric partAf1S(Pe):

AADC(2) _ %ACIS(DOO) n %(ACIS(DW))T , (91)
which leads to some conceptual and also computational giogpions e.g. in the calcula-
tion of derivatives (gradients!) since the left and riglgezivectors of a symmetric matrix
are identical, while for the non-symmetric Jacoby matrice€C2 and CIS(R,) left and
right eigenvectors differ. Both eigenvectors are neededhi® calculation of derivatives.
Other second order methods for excited states are the s@rded polarization propa-
gator approach!-4> SOPPA and the perturbative doubles correcffoRPA(D), to time-
dependent Hartree-Fock, which for excitation energietsis known as the random phase

lwe assume here that the Brillouin theorem is fulfilled andstthe occupied/virtual block of the Fock matrix
vanishes. This holds for closed-shell and unrestrictech-ybell Hartree-Fock reference states. For a discussion
of additional terms that need to be accounted for in restlicipen-shell SCF based calculations we refer e.g. to
Refs34-36
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approximation (RPA). The latter method can also be undedsas a non-iterative approx-
imation to SOPPA, similar as CIS(D) is a non-iterative appration to CIS(DQ). The
relation of RPA(D) and SOPPA to the single-reference calxlester response methods
is somewhat more difficult, since these methods are membberslifferent hierarchy of
methods (with RPA (TDHF) as first-order model) which is rethto the so-called orbital-
optimized coupled-cluster (OCC) methét4® Therefore, these methods will not be dis-
cussed in detail in the following, but we note that the sanmecepts (doubles amplitude-
direct formulation and RI-approximation) can by appliededuce also for these the com-
putational costs to the same extend as for CC2, ADC(2), Clg(and CIS(D).

6.1 Doubles amplitude-direct formulation of second order nethods

An important feature of second order methods or approxirdatéles methods, as one
might also call them, is that an explicit storage (in RAM ordisk) of complete sets of
double excitation amplitudes can be avoided similar astihrage of triples amplitudes is
avoided in the approximate triples methods CCSD(T), CC3DTCSDR(3), or CC35-4°
This is important for applications on large molecules sisicgilar as for the approximate
triples methods the storage of the amplitudes would protahje-scale applications sim-
ply by a storage space or 1/O bottleneck.

For example, the MP2 energy can be calculated without gfdhia double excitation
amplitudes using the following scheffle

do ¢ = 1, nocc
do 5 =i, nocc
do a =1, nvirt
do b = b, nvirt
tffb = (ialjb)/(€e; — €a + € — €p)
Enipo = Enpa + (2 — 05){2(ialjb) — (ialjb)}t;),
end do
end do
end do
end do

In a similar way also the equations for the doubles amplgude CC2 can—for
given singles amplitude$—immediately be inverted to

t%, = (ailbj)/(e; — €a + € — 1) 92)

where the similarity transformation witkxp(7}) has been included in the AO-to-MO
transformation for the modified two-electron integrals

(ailbg) = > AR, S AR AL S AL (af]yd) (93)
@ B8 v §

With A2, = Coq — > Caxth andA”, = Cyi + Y, Cactl. Inserting Eq. (92) into the
equation for the singles amplitudes, Eq. (84), gives a seffettive equations for the CC2

MThe explicit formulas given here and below are for a clogeeltsestricted Hartree-Fock reference determinant.
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singles amplitudes, which reference the doubles ampﬁmﬂ)eonly as intermediates,
which can be calculated and contracted with one- and twetrele integrals “on-the-fly”
without storing a complete set of these amplitudes on disk:

j 1
do a =1, nvirt
b=1, nvirt

t, = (ailbj)/(e; — o + € — v)
Qei = Qi + Yoo (25, — t17) (jblca)

Qak = Qak — oy, (260, — t17) (jblik)

end do
end do
end do
end do

To avoid the storage of doubles amplitudes is even more itaptiior excited states, since
in this case else doubles contributions to eigen- or triatars would have to be stored
for several simultaneously solved eigenvalues and a numbierations. An explicit
reference to the doubles part of eigen- or trial vectorsmduthe solution of the eigen
problem can for the approximate doubles methods be remaovegdoiting the particular
structure of the Jacoby or secular matrices of these methrodich the doubles-doubles
block is in the canonical orbital basis diagonal with thegdiaal elements equal to SCF
orbital energy differences:

AHl 21 Am 2 E,\ E,
(AH2V1 6uzu2€uQ > <E,/2 ) v <E1/2 > : (94)
The doubles part of the eigenvectors is thus related to tigdes part and the eigenvalue
through the equation

AL By,
_ Zul 2 ) (95)

W = €y

E

2

which allows to partition the linear eigenvalue problemtia space of singles and doubles
replacements as an effective eigenvalue problem in theeggfainly the single excitations:

A K An v e
Z Apy + Z % By, = ZA;L{JVZ (W)Ey, =wEy,, . (96)

v

The last equation is, however, in difference to Eq. (94) alinear eigenvalue problem
because the effective Jacoby matAig{J,jl (w) depends on the eigenvaluewhich is itself

first known when the equation has been solved. But with iteraéchniques this eigen-
value problem can be solved almost as efficiently as ther@idjnear eigenvalue problem
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and the elimination of the need to store the doubles partlafiea or trial vectors more

than compensates this complication.
To apply these iterative techniques for the solution ofdasgale eigenvalue problems

one needs to implement matrix vector products of the form

e Zl/1 A, by
Oy (Wa bVl) = Z A,uflzjjl (w)bvl = Z A,ull/l bl/l + Z A,LL1"62 ﬁ . (97)

v

Note the similarity of the quotient in the last term with theeession in Eq. (95). For CC2
this term becomes

T , DIHAEE)E  2(ailbj) — (vilag
bZ]b — ZAia‘j@kcb? _ ch< ¥ [ ]| > _ (a‘7’| j) ( 7’|aj) , (98)
€iajb ‘T ’ € — €+ € —€tw € — €+ € — €t w

with the modified MO electron repulsion integrals

(aile) = P D7 (RhaAly + ALAL) D AZ AL, (aB) (99)
af v¥é

whereAZ, = — 3, Carbh, Al; = +32,Cacbi and P;} a symmetrization operator
defined throughP.! fia jv = fia,jb + fjbia- The linear transformation in Eq. (97) can
thus be calculated using a similar algorithm as for the regid of the ground state cluster

equations without storing any doubles vectors:

do ¢ = 1, nocc
do j = 1, nocc
do a =1, nvirt
do b =1, nvirt
by, = (ailbj)/(€i — €a + € — € +w)

Tei = Oci + Y 41, (267, — by ) (jblea)

t = (ailbj)/(€e; — €a +¢j — €)
Oai = Oai + ij (Qﬁfzjé; - tff;) > ek[2(dblke) — (je|kb] bex

end do
end do
end do
end do

The fact that the doubles amplitudes of CC2 are determinedhbysingles ampli-
tudes through Egs. (92) and (93) and reducetfgr — t,(}l) = 0 to the first-order
amplitudes of MP2, opens a simple possibility to implemelt$(D.,) and CIS(D) as
approximations to CC2. Considering the effective Jacoblrimydq. (96), as a functional
of the singles amplitudeA /7 (¢, , w) one obtains the connection:
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CC2 : > AT (1S9 w)E,, =wE,,

Hiv1

CIS(DOO) . Zyl Aefll]jl( 511)7 )EV1 = wEMl
CIS(D) : WwCsD) — Z#m ECISAZ{];1 (t‘JR, )ESIS

The attentive reader has probably observed that the pasiti, doubles amplitude-direct
formulation for second order methods—although it remowesreed to store complete
sets of any doubles amplitudes—does alone not reduce madtdrage requirements of
these methods: the calculation of the doubles amplitudgsines the electron repulsion
integrals (ERIs) in the (modified) MO basis, which are obdithrough four-index trans-
formations from the AO integrals, as e.qg. in Egs. (93) and.(Efficient implementations
of such transformations require the storage of an array katfitransformed integrals of
the size of%OQNQ, whereO is the number of occupied and the number of atomic or-
bitals, which is even slightly more than needed for the desibimplitudes. For CC2 and
also for the other second order methods for excited stakénaihe calculation of gradi-
ents for the MP2 energies, the doubles amplitudes need torieacted in addition with
two-electron integrals with three occupied or virtual ek, (ai|jk) and (ai|bc), which
within the schemes sketched above would give rise to evgerdatorage requirements.
The problem can be solved with the resolution-of-the-idg@aipproximation for electron
repulsion integrals.

7 The Resolution-of-the-Identity Approximation for ERIs

The main idea behind the resolution-of-the-identity appratior?’>8for electron repul-
sion integrals can be sketched as follows: With increastoge orbital basis sets the
products of AOs appearing for the electrons 1 and 2 in theesgion for the four-index
two-electron integrals,

@08) = [ [ xelfns(i) - (a)xs(dndn (100

will soon become (numerically) highly linear dependent #ndk it should be possible to
expand these products which good accuracy in a basis sexitibayfunctionsQ,

Xa (71)x3(F1) ZQ 71)cQ,a8 (101)

with a dimension much smaller then that of the original pridipace N(N + 1)/2, as
illustrated in Fig. 1 for an atom with only-type functions. The coefficients) .3 can be
determined through a least square procedure. Defining thainéng error in the expansion
of an orbital pair

Rap(71) = Xa(F1)xp(71) ZQ 71)Cq,08 » (102)
the quadratic error in the coulomb repulsion |nteg(aJ/§|75) can be written as

1
(Ra5|RW5) :/ / Rag(Fl)—Rvg(Fg)dTldTg (103)
R3 JR3 T12
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Figure 1. The left column shows exponents of an even-tempered (13s) atomic Gaussian type orbital (GTO
basisy,(r) = exp(—r2a,,) and the column in the middle the exponents of all 169 overlapsSian functions
resulting on the same atom from the produgtsy... The right column shows the exponents of an even-tempered
(25s) auxiliary basi€)(r) = exp(—r2aq) set which could be used to expand these products.

and fulfill the Schwartz inequality

(RaglRys) < \/ (Rag| Rap)y (Rys| Bos) (104)

Minimization of (R,z|Raz) With respect to the expansion coefficienteads to the linear
equation:

——(RaplRag) =0 & (RaplQ) =0 & (aflQ)— > cpas(PlQ)=0

dCQ@ﬁ >
(105)
with
(PlQ) :/ P(Fl)LQ(Fz)dﬁdm : (106)
R3 JR3 12
(045|Q) = /]RS /]RS Xa(Fl)X@(Fl)éQ(’FQ)dTldTQ . (107)

Arranging the two-center integrals in a matiixg = (P|Q) the expansion coefficients
can be expressed as

c@.op = Y_(aBIP)[V ' pq, (108)

P
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and one obtains for the four-index coulomb integrals theagdmation

(aBly0) = > (aBlQ)V " ar(Pho) . (109)
QP

We have above derived Eq. (109) as result of a least squang fitocedure for the over-
lap densitiesy, (7)xg(7), which is why this approximation is also known as “density fit
ting”1%2% Eq. (109) can be compared with the expression for an (ajypadg) resolution
of the identity for square integrable functions in threezeinsional space,

1= Y [QIs or(Pl  with Seo= [ QOIP(Ir. (110
QP R
applied to four-center overlap integrals

[, X0 (sl = (@8167) ~ S @BlQIS ar(PIo) . (110
QP

We see that Eqg. (109) can alternatively be viewed as an (ajppabe) resolution of the
identity in a Hilbert space where the coulomb operatar,, is used to define the scalar
product as in Egs. (100) and (103). This approximation has #il properties expected
from a resolution-of-the-identity or basis set approximats e.g. that the norm of the
error in the expansiofiR.s|| = (Rag|Rag) Will always decrease with an extension of
the auxiliary basis and that the approximation becomestanabe limit of a complete
auxiliary basis sefQ}.

Itis important to note that the resolution-of-the-idenéipproximation does not—or at
least not in general—reduce the computational costs focaktmulation of AO four-index
electron repulsion integrals, since the right hand sidef(EE09) is more complicated to
evaluate than the left hand side. A reduction of the comjmrtat costs is only achieved if
the decomposition of the four-index integrals into thresd awo-index intermediates, pro-
vided by this approximation, can be exploited to simplifyptractions of the AO coulomb
integrals with other intermediates.

A common bottleneck of all second order correlation methmtsground and excited
states) is the four-index transformation of the AO ERIg}|vd) to ERIs in a molecular
orbital basis (possibly modified as in Eqg. (93) or (99)) witlotoccupied and two virtual
indices:

(ailbj) = anazcvbzcﬁizczsj (af|yd) . (112)
« o B 5

Efficient algorithms for this transformation require a nwenlbf floating point multipli-
cations that scales for the individual partial transforiora with %ON4 + %OQN3 +
102V N? + L0?V2N (ignoring possible sparsities in the integrals or coeffitg and,
as already pointed out above, disc space in the ordéwﬂ\ﬂ.

Using the resolution-of-the-identity approximation, fbar-index integrals in the MO

basis can be obtained as

(ailbj) ~ ZBP,aiBP,bj (113)
P
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Table 1. Comparison of elapsed wall-clock timings for RI-M¥s. conventional integral-direct MP2 energy
calculations (# fcts. is the number of basis functions and #he number of correlated electrofig,; p5 timings
obtained with thevpgr ad code of the TURBOMOLE packafb.

molecule basis #icts. #  Tupo TrI—MP2
benzent QzZVPP 522 30 28 min 24 sec
benzeng aug-cc-pVTZ 756 30 3.8h 1.2 min
Fe(CO)? QZVPP 670 66 11.3h 8.7 min
Fe(GHs).? QZVPP 970 66  843h 45 min
Cgo®P cc-pVTZ 1800 240 112h 171 min

Calix[4]arené-° cc-pvTZ 1528 184 39.3h 5.6h

2 RI-MP2 timings forr i cc2 code of the TURBOMOLE packafe ® from Ref. 62;
¢ RI-MP2 timings forr i np2 code of the TURBOMOLE packafe

with

BP,ai = Z[V_l/Q]PQ Z Caa Z Cﬁl(Q|aﬁ) (114)
Q a B

which requires onlyON2N, + OVNN, + OV NZ2 + $O0?V2N, floating point multi-
plications and memory or disc space in the or@éy N,.. With auxiliary basis sets opti-
mized® 59 €for the application in second order metha¥is is typically 2—4x N,.. As-
suming thatD <« V = N (usually given in correlated calculations), one finds tiat t
number of floating point operations is by the RI approximatieduced by a factor of
~ (N/O + 3)N/N,. With doubly polarized or correlation-consistent trigldsasis sets
(e.g. TZVPP or cc-pVTZ) as often used with MP2 or CC2, the Riragimation typi-
cally reduces the CPU time for the calculation of {lag|bj) integrals by more than an
order of magnitude. Some typical examples for MP2 calcoitetifor the ground state cor-
relation energy are given in Table 1. These also demongimatethe reduction in CPU
time obtained with the Rl approximation increases with tize ®f the orbital basis set.
An important point for calculations on weakly bonded (i.gdiogen-bridged or van der
Waals) systems is that the efficiency of the integral presdrey, which is important for
the performance of conventional implementations usingdex AO ERIs, diminishes if
diffuse functions are included in the basis set. For weaklyded complexes such diffuse
functions are, however, needed for an accurate descripfithe long range electrostatic,
exchange-correlation, and dispersion interactions. As s¢the calculations for benzene
with the QZVPP and the aug-cc-pVQZ basis, RI-MP2 calcufetiare much less sensitive
to such effects: while the CPU time for the conventional MBRglation increases from
QZVPP to aug-cc-pVQZ by more than a factor of 8, the CPU tinmeded for the RI-MP2
calculation increases only by a factor of 3.

However, for large scale applications at least as impoiitattiat the scaling of the
storage requirements in the calculation of the integfaldbj) with the system size
is reduced toO(ONN,). In combination with the doubles amplitude-direct formu-
lation outlined in the previous subsection, the RI appration completely removes
the need to store any intermediates larger titHO N N,.) on disc or in memory. For
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example the MP2 ground state energy can now be calculategl tins following algorithm:

precomputeBg 4;
do ¢ = 1, nocc

do j =i, nocc
I, =30 BqaiBou; V¥ ab (matrix-matrix multiply)

do a =1, nvirt
do b =1, nvirt
ﬁfljé = I;Jl;/(ei — €+ € —€)
Enipo = Evpe + (2 — 6ij){211?1; - fﬁi}tff;
end do
end do

end do
end do

The reductions are even larger for CC2 and other second ondénods for excited
states and for th&(N5)-scaling steps in the calculation of MP2 gradients. It turas
that all contractions which involve other four-index intelg in the MO basis than those of
(ia|jb)-type, needed in second order methods, can with the decdtiopogiven by Eq.
(109) reformulated such that an explicit calculation of fimr-index MO integrals can be
avoided.

Together with the reduction in the CPU time the eleminatibtine storage bottleneck
opened the possibility to apply MP2 and CC2 to much largetesys as was feasible with
conventional implementations based on four-index AO ERlisice the steep increase of
the computational costs with the basis set size is reduceleébRl approximation from
O(N*) to O(N2N,) itis also easier than before to carry out such calculatidtis accu-
rate basis sets, as needed to exploit fully the accuracy &f, M2 or the other second
order methods.

At this point it becomes neccessary to ask what are the emoduced by the RI
approximation? As is obvious from the above discussionattwiracy (but also the ef-
ficiency) of the RI approximation depends on the choice ofahxgiliary basis sets. For
a balanced treatment the auxiliary basis set should be @atihior the particular orbital
basis used in the calculation. Firstly, because the ornpitaducts that need to be well rep-
resented depend strongly on the orbital basis and, secdmettpuse the accuracy of the
approximation should increase with increasing accuradh®brbital basis to make sure
that eventually a correct basis set limit will be obtained fdily exploit the potential of the
approximation it is advantageous to further “tune” the dawy basis set for the integrals
most important in the employed electronic structure metheor second order methods
these are, as shown above;|bj)-type integrals. The auxiliary basis functions are thus
used to expand products of occupied with virtual molecuthitals:

$a(FM)i(F) = Y Q(7)cq.ai - (115)
Q

If we consider an atom, all products will be linear combinasi of Gaussian type func-
tions centered at the atom with angular momenta u 19 = lors + loce, Wherel,,p is
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Figure 2. Exponents of the primitive GTOs in the cc-pVTZ talS? (on the left) and auxilia§?: 60 (on the right)
basis sets for the neon atom.

the highest angular momentum included in the orbital bagiasd, .. the highest angular
momentum of an occupied orbital. Also the range of expontrasshould be covered
by the auxiliary basis can be deducted from similar consitilens, but it should be taken
into account that the importance of the orbital prodygts; for electron correlation varies
over orders of magnitudes. E.g., the contributions of cabitals and similar those over
very high lying tight virtual orbitals (sometimes referrdas “anti core” orbitals) is small

because of large orbital energy denominators in the exijoreésr the amplitudes. This

limits the importance of tight functions in the auxiliarydis, in particular if a frozen core
approximation is used and the core orbitals cannot at atritire to the correlation treat-
ment. In the other direction, the most diffuse exponent aded the auxiliary basis set
is bound by the exponent of any atomic orbital contributiigm#icantly to an occupied

orbital, irrespectively how diffuse functions are inclada the basis set. A typical compo-
sition of an orbital basis and a respective auxiliary basi®&correlated calculations with
a second order method is shown in Fig. 2 at the example of tp&/@& basis sets for the

neon atom.

It turns out that the above arguments, although strictly ealid for atoms, apply in
practice usually also well to moleculésTherefore, the auxiliary basis sets can be opti-
mized once at the atoms for each orbital basis and then storadbasis set library. On
the TURBOMOLE web pad@ optimized auxiliary basis sets for correlated calculation
with second order methods are available for several orbaals sets including S\
TZVP®, TZVPP®, and QZVPB® and most of the correlation-consistent basis®éts 2
(cc-pVX Z, aug-cc-p\X Z, cc-pwCVX Z, etc.). These have been optimi2&d®%such
that the RI error, i.e. the additional error introduced bg B approximation, is for the

NAn exception are the atoms with ondyorbitals occupied in the ground state configuration, inipaler H and
Li, which in chemical bonds are often strongly polarizedr ff@se atoms the auxiliary basis sets contain usually
functions up td,.., + 1 (instead of onlyl,,,-,) and are often optimized on small molecules.
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Figure 3. On the left: one-electron basis set errors in th@ Mikence correlation energy (in % of the estimated
limiting value) shown as normalized Gaussian distribugigietermined fromA and A4 for a test set of 72
small and medium sized molecules with row 1 (B—Ne) and row 248 atom$°:-60. On the right: error in the
MP2 valence correlation energies due to the resolutioth@fidentity approximation for ERIs for the same test
seP%60 Note that the scales on the abscissa differ by about thoegof magnitude!

ground state correlation energies (MP2 or CC2) about 2-8rsrdf magnitudes smaller
than the one-electron (orbital) basis set error of the m&seorbital basis set. The
correlation-consistent basis sets ccp¥ with X = D, T, Q, ...and the series SVP,
TZVPP, QZVPP, ...constitute hierarchies that convergento(valence) basis set limit
and are thus a good example to demonstrate how orbital anlibayikasis sets converge
in parallel. Fig. 3 shows the results of an error analysiglierMP2 valence correlation
energies for 72 molecules containing first and second romsigl, He, B—Ne, Al-Ar).
The RI errors are somewhat larger for other properties thamgfound state correlation
energies, for which they have been optimized. In particinaiesponse calculations for
excited states the diffuse functions and also some othegriat types become more im-
portant than they are for ground state calculations. Bilitifs¢ RI error remains between
one and two orders of magnitudes smaller than the orbitas ls&s error as is shown in
Fig. 4 by an error analysis for RI-CC2 calculations on ext#tates with the aug-cc-pVTZ
basis sets. Since the RI approximation is a basis set exgraapproach the Rl error is a
smooth and usually extremely flat function of the coordiaaiéherefore most of the error
cancels out in the calculation of energy differences, asreartion enthalpies, and the
errors in geometries are very small—typically a fédv 3 pm and, thus, usually below the
convergence thresholds applied in geometry optimizations

In summary, the major advantages of the resolution-ofidleetity approximation for
the electron repulsion integrals for correlated seconérmmtkethods are
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Figure 4. Mean and maximum of the one-electron orbital aedRherrors in RI-CC2 calculations for excited
states with the aug-cc-pVTZ basis $8t§%5% On the left: errors in excitation energies for 132 statesthe
middle: errors in the oscillator strengths for 32 states.ti@nright: errors in the dipole moments of 52 excited
states. For the test sets used and the technical detailseté Rom where the data has been taken.

¢ It allows efficient doubles amplitude-direct implemertas and eliminates the need
to store anyO(N™*) arrays in memory or on disc.

e The CPU time for the correlation treatment is reduced by ahowrder of magnitude
and more.

e |tis applicable in response calculations for excited statece it does not depend on
the locality of any intermediates.

Another important point related to the elimination of theystorage demands fér(N*)
scaling intermediates (i.e. two-electron integrals or Eungbes) is that the parallelizability
of these methods is improved since less data needs to be auinated between computer
nodes participating in a parallel calculation. We will cobeck to this point in the next
section.

8 Parallel Implementation of RI-MP2 and RI-CC2 for Distribu ted
Memory Architectures

As discussed above, the time-determining steps in RI-ME2é#rer second order methods
implemented with the RI approximation are the computatibtie electron repulsion in-
tegrals in the MO basi§a|;jb) and/or the double excitation amplitudg$ and their con-
traction with integrals or other amplitudes to new interimaésk, as for example

Y. = Y teyBay - (116)
bj
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Also for this step the computational costs increas®@8? V2N, ). As described in Refs.
55,73-76,Yp.; and all other intermediates calculated fro)}fg can efficiently be calcu-
lated in a loop over two indices for occupied orbitals wi2\V?) memory demands. The
time-determining steps of RI-MP2 can thus efficiently plateded over pairs of indices
for occupied orbitals since these are common to all stepingcaith O(0O?V2N,) or
O(0?V3). An alternative could be pairs of virtual orbitals, but thisuld result in short
loop lengths and diminished efficiency for medium sized roalles. A parallelization over
auxiliary basis functions would require the communicatid-index MO integrals be-
tween computer nodes, which would require high-performearatworks. Such a solution
would restrict the applicability of the program to high-esupercomputer architectures.
TURBOMOLE, however, has been designed for low-cost PC etsswith standard net-
works (e.g. Fast Ethernet or Gigabit). Therefore we choos¢hieri cc2 code a paral-
lelization over pairs of occupied orbitals and acceptetitttia results in an implementation
which will not be suited for massively parallel systemsgcsia good load balance between
the participating CPUs will only be achieved for>> ncpy (vide infra).

A key problem for the parallelization of RI-MP2 and RI-CC2wih this strategy the
distribution of pairs of occupied orbita{gj) over distributed memory nodes such that

a) the symmetry ofia|jb) with respect to permutation éf — ;b can still be exploited

b) the demands on the individual computer nodes for acagssid/or storing the three-
index intermediate® ,; andYy 4; are as low as possible.

To achieve this, we partition the occupied orbitals intop; batchesz,, of (as much
as possible) equal size, wheng:py; is the number of computer nodes. The pairs of
batchesZ,,,Z,./) with m < m’ can be ordered either on the upper triangle of a sym-
metric matrix or on block diagonal stripes as shown in FigNéw, each computer node
gets assigned in a suitable way one block from of each didgsunzh that each node needs
only access a minimal number of batcl¥s of By ,; andYy 4;. The minimal number
of batches a node needs to access—in the following denotegas-increases approxi-
mately with,/ncpy. The calculation of these three-index ERig ,; would require about
O(N2Nx) + O(ON2Nx) x nyx/ncpy floating point multiplications. Similar compu-
tational costs arise for some steps that invdlyg,; and other intermediates that follow
the O(O? N2 N,,)-scaling construction of this intermediate. Thus, a confietween min-
imization of the operation count and communication arises:

o Ifthe three-index intermediatés, ,; andYy .; are communicated between the nodes
to avoid multiple integral evaluations, the communicatiemands per node become

relatively large~ NN, x O/\/ncpu.

¢ |f the communication of three-index intermediates is aedithy evaluating on each
node all integrals needed, the operation count for the stdpsh are in RI-MP2 and
RI-CC2 the next expensive ones after t(h¢0*V? Nx) steps decreases only with

N

The first option requires a high bandwidth for communicatidvie the second option can
also realized with a low bandwidth, but on the expense of s édficient parallelization.
For both ways a prerequisite for a satisfactory efficiencthat the total computational
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Figure 5. Arrangement of the pairs of batches< m’ with active occupied orbitals on the upper triangle of a
symmetric matrix or on block diagonal stripes.

costs are dominated by those for t¢\®) steps such that the time needed for multiple
calculations O(N*)) or communication@(N?)) of three-index intermediates is a negli-
gible fraction of the total time for the calculation. Bothtimms have been realized in our
parallel implementation of thei cc2 code and shall in the following be denoted as modes
for “slow communication” and “fast communication”.

To implement the blocked distribution of occupied orbitatlices and index pairs
sketched above we define at the beginning of the calculadti®following index sets:

e 7,,: ablock of occupied orbitalsassigned to node:

e J..: merged set of the,;; blocksZ,, for which nodem needs the three-index ERIs
Bg «i or calculates a contribution iy .

e S,,: the set of all columns in the blocked distribution to whiabde m calculates
contributions.

e R,,(n): the indices of the rows in colummassigned in this distribution to node

With this concept one obtains an efficient parallelizatibmost program parts that involve
at least one occupied index. These parts use only threevanthtlex AO integrals and
include all steps that scale with(N*) or O(N?) in RI-MP2 single point calculations
for energies or RI-CC2 calculations for excitation enesgiad spectra. For a discussion
of additional demanding steps in the computation of analgérivatives (gradients) the
interested reader is referred to Refs. 55, 75—77. Here, Wyeskatch how the computation
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of the intermediaté’, ,; can be implemented without any MPI communication once each
computer node has calculated or received all integralrimteliates3, ,; needed there:

loopn € S,,,, loopI (wherel C Z,)
readBq q; forall i € I

loopn’ € R, (n), loopj € Z,,» with j <4
* readBq i;

* tz) — BQ_,aZ-Bbej/{ei — €+ € — eb}

% Ypai — (2t — 1)) Bpy,; andforj # i alsoYpy, « (2t% — ;) Bpai
end loopj, loopn/
storeYp ,; andYpp; on disk (distributed)

end loop!, loopn

If only the RI-MP2 energy is needed, it can be evaluated tiradter the calculation of the
integrals(ia|;jb) and amplitudes,’, as described in Sec. 6.1 and the calculatioigf,;
can be skipped. If the latter intermediates are needed gifiigiloutions to thé’y ,; inter-
mediate can be added and redistributed (after the looprovers been closed) such that
each node has the complete results¥py,; for all i € 7, (requiring the communication
of ~ 20V N,/ /ncpy floating point numbers per node).

8.1 Performance for parallel RI-MP2 energy calculations

To benchmark the calculation of MP2 energies we used foucaypest systems with
structures as shown in Fig. 6:

¢ A calicheamicine model taken from Ref. 78, which has alsogiotgroup symmetry.
These calculations have been done in the cc-pVTZ basi®¥<$ét&with 934 orbital
and 2429 auxiliary functions and 124 electrons have beaelated.

e The fullerene G, which has } symmetry, but the calculations reported here ex-
ploited only the Abelian subgroupPs;,. The cc-pVTZ basis set has been used, which
in this case comprises 1800 orbital and 4860 auxiliary basistions and the 240
valence electrons were correlated.

e A chlorophyll derivative which has also no point group syntime The cc-pVDZ
basis with in total 918 orbital and 3436 auxiliary functidms/e been used and 264
electrons have been correlated.

e A cluster of 40 water molecules as an example for a system evimtegral pre-
screening leads to large reductions in the costs in cormegltiMP2 calculations.
The basis sets are 6-32@or the orbital® and cc-pVDZ for the auxilial? basis
with, respectively, 760 and 3840 functions; the point grisup; and the 320 valence
electrons have been correlated.
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Figure 6. Structures of the four test examples used to beaththe performance of parallel RI-MP2 calcula-
tions. For the details of the basis sets and the number afleted electrons see text.

The maximum amount of core memory used by the program wakdalallations limited
to 750 Mb. The calculations were run on two different Linuxster: one cluster with
ca. 100 Xeon Dual 2.8 GHz nodes connected through a cascadedithetwork and a
second cluster with ca. 64 Athlon 1800MP MHz nodes conneti@adigh a 100 MBit fast
Ethernet network. Due to a much larger load on the first ciustd its network the transfer
rates reached in the benchmark calculations varied beteae30—-200 MBit/sec per node.
On the Athlon Cluster with the 100 MBIt network we reachechsfar rates of ca. 20-50
MBit/sec per node.

Fig. 7 shows timings for the calculation of MP2 energies fo G, fullerene. On
both architectures in sequential runs about 55% of the tiraespend in the matrix mul-
tiplication for the N> step. With increasing number of nodes this ratio slowly dases.
In case of the “slow communication” mode because the costthéintegral evaluation
take an increasing fraction of the total wall time; in thestfaommunication” mode (and
here in particular on the cluster with the slower networlgdaese of the increasing fraction
of time spent in the communication of the 3-index MO integn&rmediateBg ;. Not
parallelized steps—as e.g. the evaluation of the mafpig of 2-index ERIs, its Cholesky
decomposition and formation of the inverse— take only a mafdraction of the total
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Figure 7. Timings for the most important steps in parallelM®2 energy calculations fordg in the cc-pVTZ
basis (240 electrons correlated). For technical detaitt@machines used see text. At the abscissa we indicated
the number of CPUs used for the calculations. For the clugitera 100 MBit Network letters "a” and "b” are
added, respectively, for calculations in the “fast” andigl communication modes. On the other cluster only
the former program mode has been tested. The fraction défmierhead” includes most non-parallel steps, as
the calculation of the Coulomb metri¢ and the inverse of its Cholesky decomposition, 1/0 and comication

of MO coefficients, etc. With “AO 3-idx.-integ” we denotedettime spend for the calculation of the AO 3-index
integrals (P|uv) and with “transformation” and “I/O & comm. for B” the fractis spend in the three-index
transformations for the intermediaté%a and for saving these intermediates on disk and/or disiriguhem to

other computer nodes. “Blstep” and “I/O for N5 step” are the fractions spend, respectively, inAfig-scaling
matrix multiplication and the 1/0O of3 intermediates during the calculation of two-electron M@gmals. For
parallel calculations idle times caused by non-perfectidoalance are included under the point “I/O fot5N
step”.

wall time and the fraction of the time spend in the 1/O staygragimately constant with
the number of nodes used for the calculation. Another ingmdnnessage from Fig. 7 is,
that even with a relatively slow network it is advantage@usdmmunicate the 3-index in-
termediates, although on the cluster with the slower ndtwue difference in performance
between the two modes is not large. We note, however, thatgpends also on the size
of the system and the basis sets.

Because of the symmetry of the molecule, an RI-MP2 energyutstion for Gy is
today not really a large scale application. The same holdthfo other three test exam-
ples. Nevertheless, already for these (for parallel cataus) small examples the speed
ups obtained with the present implementation are reasersbfFig. 8 shows. The speed
up obtained increases with the system size as the compuhtiosts become dominated
by the V®-scaling matrix multiplication in the construction of theQW-index ERIs and
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Figure 8. Speed up obtained for parallel RI-MP2 energy ¢atians on the Linux cluster with Gigabit network
with four test examples. The number of nodes is given on teeissa and the speed up (defined as wall time of
parallel calculation dived by the wall time of the sequdntim) is indicated on the ordinate.

the less good parallelizing calculation and/or commuiaceatdf the 3-index MO integrals
becomes unimportant for the total wall time.

9 RI-MP2 Calculations for the Fullerenes Go and Cay0

An important aspect of the parallel implementation of RI-MB that it allows to com-
bine the fast RI-MP2 approach wigiarallel Hartree-Fock self-consistent field (HF-SCF)
calculations, available today in many program packageslfmstronic structure calcula-
tions, to optimize geometries for relatively large molesuat the MP2 level. An example
for such a calculation is the determination of the MP2 basidimit for the ground state
equilibrium structure of . The structure of g has been studied before at the MP2
level by Haser and AImI&f in 1991, but due to the large computational costs of MP2 the
calculations had to be limited to a singly polarized TZP basit ([5s3pld], 1140 basis
functions), which is known to cover only about 75% of the etation energy. With the
parallel implementation of RI-MP2 it was now possible rapés calculation using cc-
pVTZ basis ([4s3p2d1f], 1800 basis functions), which giygscally correlation energies
almost within 90% of the basis set limit, and the cc-pVQZ b#l&is4p3d2f1g], 3300 basis
functions), which usually cuts the remaining basis setremgain into half. The results for
the bond lengths and the total energies are summarized la Zdabgether with the results
from Ref. 81 and the available experimental data. As argteip from the quality of the
basis sets, the result for the correlation energy incréagabout 15% from the MP2/TZP
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Table 2. Equilibrium bond distances o§&; dc—c denotes the distance between adjacent C atoms in a five-ring
anddc=c the distance between to the C-C bond shared between tongix-riThe bond distances are given in
Angstrgm é) and the total energies in Hartrees (H).

Method dc,cl,& dC:C/A Energy/hartree
SCF/DZP 1.450 1.375 -2272.10290
SCF/TZP 1.448 1.370 -2272.33262
MP2/DZP 1.451 1.412 -2279.73496
MP2/TZP 1.446 1.406 -2280.41073
MP2/cc-pVTZ 1.443 1.404 -2281.65632
MP2/cc-pVQZ 1.441 1.402 —2282.34442
expd 1.458(6) 1.401(10)
exp? 1.45 1.40
exp? 1.432(9) 1.388(5)

2 from Ref. 80;° from Ref. 81;° from Ref. 76, at the MP2/cc-pVTZ optimized structure
the SCF energy is -2272.40406 hartrégas phase electron diffraction, Ref. 8%olid
state NMR, Ref. 83% X-ray of Cso(OsOy,)(4-tert-butylpyridine), Ref. 84;

to the MP2/cc-pVTZ calculation and again by about 6% fromdtvVTZ to the cc-pvVQZ
basis. Also the changes in the bond lengths from the MP2/6ZRet MP2/cc-pVQZ level

are with 0.004—0.008 of the same magnitudes as between the MP2/DZP and MP2/TZP
calculations. But the difference between the two C—C distamemains almost unchanged,
and also the comparison with the experimental data is net&ftl, since the error bars of
the latter are with about1 pm of the same order of magnitude as the basis set effects.
The inclusion of core correlation effects would lead to aHar slight contraction of the
bond lengths, but the largest uncertainty comes from highger correlation effects which
would probably increase the bond lengths in this systemijkmly not more than 0.008..
Therefore, it is estimated that the MP2/cc-pVQZ resultgtierequilibrium bond distances
(r.) of the buckminster fullerenedg are accurate withis= 0.005A. This is slightly less
than the uncertainty of the presently available experialatata. Within their uncertainties
the ab initio calculations and the experiments are thus ddgmgreement.

Another example demonstrating which system sizes can baléwith the parallel
implementation of RI-MP2 is the next larger icosahedral btwgue of the Buckminster
fullerene Go: the G4 molecule.The correlation consistent trigldsasis cc-pVTZ com-
prises for this molecules 7200 basis functions and, if thedke orbitals are kept frozen,
960 electrons have to be correlated. This calculation hes hen on a Linux cluster with
Dual Xeon 2.8 GHz nodes connected by a Gigabit network. Berthe memory demands
of implementation increase for non-Abelian point groupthwiie square of the dimension
of the irreducible representations the calculation wasieziout in the B;, subgroup of
the molecular point group,l On 19 CPUs the RI-MP2 calculation was completed after 16
hours and 6 minutes. About 12.5% of the time was spend in thieation and distribution
of the two- and three-index integrals and 85% in ¢ng?V2N,.) scaling construction of
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Figure 9. Structure of the icosahedral fullereng

the four-index integrals in the MO basigz|;jb). In Dy, symmetry abou6 x 10! four-
index MO integrals4 4.8 TByte) had to be evaluated to calculate the MP2 energis Th
shows that such a calculation would with a conventional {ROhMP2 require either an
enormous amount of disc space or many costly re-evaluatibtie four-index AO two-
electron integrals and would thus even on a massively gheatthitecture difficult to carry
out. To the best of our knowledge this is the largest candM&® calculation done until
today. With the parallel implementation of the RI-MP2 apgmb calculations of this size
can now be carried out on PC clusters build with standard tans low cost) hardware
and are expected to become soon routine applications.

The total energy of &, obtained with MP2/cc-pVTZ at the BP&687SVP*%8 op-
timized structur®® is —9128.832558 H. For the buckminster fullereng @ single point
MP2/cc-pVTZ calculation at the BP86/SVP optimized geomeives a total energy of
—2281.645107 H. Neglecting differential zero-point enegffgcts, which in this case are
expected to be small, we obtain from our calculations amedé for the reaction enthalpy
of 4 x Cgg — Coyp of —2.25 H, i.e. a change in the enthalpy of formation per carbon
atom of—9.4 mH or—25 kJ/mol. This can be compared with the experimental réfolt
AyH of Cg relative to graphite of 39.260.25 kJ/mol. Thus, the present calculations
predict that the strain energy per carbon atomdmp@s with ~ 15 kJ/mol only about 35%
of the respective value indg.
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Figure 10. Enumeration of the atoms in NMC6 (R = methyl) andJ8TR =tertbutyl). For DMABN R = methyl
and aliphatic six-ring is replaced by a (second) methyl gratthe N-atom.

10 Geometry Optimizations for Excited States with RI-CC2: The
Intramolecular Charge Transfer States in Aminobenzonitrile
Derivatives

An example for the optimization of excited state equililbonistructures with RI-CC2 are re-
centinvestigatior?8:°1on N-alkyl-substituted aminobenzonitriles (see Fig. ZOproblem
discussed for this class of molecules in the literatureess®veral decades in many pub-
lications has been the structure of a so-called intramtdealnarge-transfer (ICT) state
which is observed in fluorescence and femtosecond speopigsexperiments close to a
so-called locally excited (LE) stafé-°® The two states belong to the two lowest singlet
hypersurfaces S1 and S2, which are connected through satorersection seam. Exper-
imental and theoretical resulfs*® indicate that the reaction coordinate which connects
the minima on the two surfaces through the conical inteisedhvolves a Kekulé-like
distortion of the phenyl ring and a twist of the amino groupjat for the N,N-dimethyl-
aminobenzonitrile (DMABN) is known to be in the ground statmost coplanar with the
phenyl ring. That the twisting coordinate is involved prblyaexplains distinct effects
of different aliphatic substituents at the amino group anfthorescence properties (vide
infra) which are intensively discussed in the literature. 1Hert-butyl-6-cyano-1,2,3,4-
tetrahydroquinoline (NTC6) and 1-metyl-6-cyano-1,2;&#ahydroquinoline (NMC6) a
twist of the amino group is restricted by the aliphatic rilgat certain range of torsion
angles, but on the other side the sterically demanding keltybutyl substituent in NTC6
disfavors a coplanar orientation. CC2/TZVPP calculafibpsedict for the ground state of
NMCB6 an almost coplanar orientation of the phenyl and amiogetes, but for NTC6 a
tilted geometry with a twist angle of about2@mp. Table 3).

Table 4 gives an overview on the CC2/TZVPP results for soneetspscopic prop-
erties of DMABN, NMC6 and NTC6, e.g. the absorption and emisenergies and the
dipole moments in comparison with the available experimlatdta. For the ICT states we
found for NMC6 and NTC6 three conformations. Table 5 sumpegrthe results for the
energetically lowest-lying structures and the ones wighhighest dipole moments denoted
as, respectively, ICT-1 and ICT-2, in comparison with threcure of the single conformer
in the ICT state of DMABN. In all three molecules the ICT edilum geometries display

112



Table 3. Calculated bond lengths (pm) and angf§sof the ground states of DMABN, NMC6, and NTC6 in
comparison (from Ref. 91, for the enumeration of the atoressg. 10).

DMABN NMC6 NTC6
d(Cpp-N1)? 137.7 138.1 139.0
d(CsCs/) 141.4 141.2 141.2
d(Cs/Cs) 141.4 141.9 141.1
d(C:Cs) 138.7 138.7 138.9
d(CsCs) 138.7 138.9 138.6
d(CsCr) 140.2 140.0 139.9
d(C5Ce) 140.2 140.2 140.3
d(CsCen) 142.7 142.6 142.6
d(CN) 118.2 118.1 118.1

7 0 0.1 27.9

b1° 23 24.8 18.9

$o° <1 1 1.5

2 bond distance between phenyl ring and amino gréuprsion angle, defined as dihe-
dral angle of the normals defined by the plangsGg -Cs. and G-N;-Cgr and the bond
Cs/-N;. © out-of-plane angle of the bondgGN; with respect to the planeseN;-Cg
(“wagging” angle). ¢ out-of-plane angle of the bondsGN; with respect to the plane
Cs-Cg/-Cs.

marked quinoid distortions of the aromatic ring system. mportant finding, which was
not anticipated from the experimental data that has bedtabiain the literature, is that
the aromatic ring is no longer confined to planarity in theitextstate. Rather, the carbon
atom labeled 8’ in Fig. 10 is pyramidalized. Therefore thphatic six-ring can accommo-
date twist angles of the amino group of up to 605 7% illustrated in Fig. 11, and in this
way energetically low-lying twisted ICT states can be i even in NTC6 and NMCB6.
In the literature it was before assumed that the aliphaticiag, which connects the amino
group with the phenyl ring restricts these molecules torfptized” structures and makes
such a twist impossible.

The transition to the ICT state is at the ground state gegnaetminated by the one-
electron HOMG-LUMO excitation in these molecules. Both orbitals are of Wlanti-
binding character, but the orbital energy of the LUMO desesaslightly faster with in-
creasing twisting angle than the energy of the HOMO and dfresaich a simple model
predicts for the ICT state close to the ground state georaairadient directed to a twisted
structure. With increasing twisting angle the transitisewames an increasing contribution
from the HOMO-2-LUMO excitation. The HOMO-2 is the Ph-N binding counterpafrt
the HOMO and increases in energy with the twisting angle aneswith the HOMO.
As the angle approaches90ne of the two orbitals becomes the lone-pair at the amino
N-atom while the other is localized in the aromatic system #ire transition to the ICT
state is dominated by the — 7* excitation. In a many electron picture this change in
the character of the excitation corresponds to an avoidesskitrg of S2 with another, at
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Table 4. Calculated absorption and emission energies gradedmoments for DMABN, NMC6 and NTC6 in
comparison with experimental data. The CC2 results for gitiem and emission energies are vertical electronic
transition energies; the dipole moments were calculatethalytic derivatives of the CC2 total energies.

DMABN NMC6 NTC6
ccz exp. CC2 exp. CC2 exp.
absorption ($) [eV] 4.471° 4.25 4.31¢ 4.33
absorption (g) [eV] 4.77 4.56° 458 432 443 4,14
osc. strengths (3 0.03* 0.0F 0.0F
osc. strengths (3 0.62% 0.49 0.5%
T. (LE) [eV] 4.14 4.07 3.91
emission (LE) [eV] 3.78 3768 3.6 3.6F 3.3% 350
T.(ICT)[eV]  4.06-4.16 4.18 3.71
emission (ICT) [eV] 2.49-3.2F 2.8-3.2 253 258 28-3.3
dipole (GS) [D] 7.4 6.6 7.5 6.8 7.7 6.8
dipole (LE) [D] 10.1 9.7 104 10.8 12.6
dipole (ICT) [D] 13.3-15.1 1741 12.% 13.5 17-19

2 Unless otherwise indicated the CC2 results for DMABN aretaftom Ref. 90 and
those for NMC6 and NTC6 from Ref. 91.CC2/TZVPP (Ref%). ¢ EELS band max-
imum (Ref. 103).2 Vertical excitation energy to the L(or ;) state which has a sig-
nificantly larger oscillator strengtli. Experimental band maximum im-hexane (Ref.
94).% Oscillator strength for vertical electronic transitiodazdated at the CC2/TZVPP
level in length gauge Vertical energy separation from ground state at the exsitate
equilibrium structure.® Maximum of dispersed emission from jet-cooled DMABN
(Ref. 104).* The first value is the result for the gas phase equilibriuncstire and the
second value is obtained at the,Gymmetric saddle point (Ref. 90).Emission en-
ergy from ICT state from maxima of fluorescence bands; gratat dipole moment
derived from the dielectric constant and refractive ingedioxane and the excited state
dipole moments from time-resolved microwave conductimigasurements in dioxane
(Ref. 105).* Value refers to the ICT-2 conformeY. Experimental band maximum in
methanol (Ref. 94). Derived from solvatochromic shift of fluorescence maximum
(Ref. 94).

the ground state structure energetically higher lying rgbdransfer state—in DMABN
according to DFT/SCI calculation in Ref. 106 the S5 statee @toided crossing with
this state is the main driving force for the formation of th€T structures (twisting and
pyramidilization at the @ atom) in DMABN, NTC6, NMC6 and other alkyl-substituted
amino-benzonitrils. It leads to a pronounced stabilizatibthe ICT state at large twisting
angles and enhances the charge-transfer character, apjpasent from the expectation
values for the dipole moment (see Table 4). For all three oudés, DMABN, NMC6, and
NTCB6, one finds a similar change in the electronic charaoten the vertical excitation in
the Franck-Condon region to the equilibrium geometrieheflCT states. This is in line
with the interpretation of recent measurements of the ditog dynamics in DMABN
derivatives after excitation to $2.107-110
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Figure 11. Equilibrium structures of the ICT states in DMABMMC6, and NTC6.

For NTC6 the increase in the twist angle from the ground toetkated ICT states
reduces the steric strain of thert-butyl group und thus compensates for the hindrance of
the twist by the aliphatic bridge. We obtain at the CC2/TZ\M&¥I that for NTC6 and
DMABN the ICT states are energetically slightly below the kfate, which is reached
by an one-electron transition from the PH-N antibinding HONb a Ph-N non-binding
orbital. For NMC6, however, the inhibition of a 9Qwist is not compensated by the
release of a similar strain since the methyl substituenteiscally much less demanding.
Thus, in difference to DMABN and NTC6 the LLEICT reaction for NMC6 is predicted
by the RI-CC2 calculations to be slightly endotherm. Thiglais why NMC6 is not dual
fluorescent, in contrast to DMABN and NTC6.

11 Summary

The computational costs of wavefunction based correlatddiio methods that treat the
electron—electron interaction correctly through secortko (so-called second order or
approximate doubles methods) have in conventional impi¢atiens been dominated by
the huge operation counts for the calculation of the fodeinelectron repulsion integrals
in the AO basis and their transformation to the MO basis. Tdstxfor these steps increase
rapidly with the size of the system studied and the basiasets. In addition, also the huge
storage demands for the four-index transformation hirdiepplications on large systems.

With the resolution-of-the-identity approximation foretielectron repulsion integrals
the CPU time for the calculation of the MO integrals neededecond order methods is
reduced by about an order of magnitude (and sometimes eveh more) and the scaling
of the storage demands is reduced fr6HO? N?) to O(OV N,,). If optimized auxiliary
basis sets are used, as they today are available for mangldrasis sets, the errors due to
Rl approximation are insignificant compared to the erroestdithe incompleteness of the
orbital basis sets.

In combination with a new parallel implementation in TURBQIUE for distributed
memory architectures (e.g. PC clusters) it became now lpledsi carry out RI-MP2 cal-
culations for energies and structures with several thaisahbasis functions and several
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Table 5. Calculated bond lengths (pm) and angt¢sud weights of the two most important one-electron excita-
tions (%) for the intramolecular charge-transfer stateBMABN, NMC6, and NTC6 in comparison (from Ref.
91, for the enumeration of the atoms see Fig. 10).

DMABN NMC6 NTC6
ICT ICT-1 ICT-2 ICT-1 ICT-2
d(Cpn-N1)? 144.3 146.8 145.0 146.8 145.7
d(CsCs/) 144.6 1435 144.8 142.9 144.9
d(Cs/Cs/) 144.6 146.2 1445 146.0 143.6
d(C:Cs) 137.2 137.2 137.7 137.3 137.8
d(C5Cs/) 137.2 138.0 136.9 137.9 137.1
d(CsCr) 142.9 143.4 142.4 1438 142.4
d(C5Cs) 142.9 141.8 143.7 141.9 144.0
d(CsCen) 140.9 141.2 140.9 141.1 140.8
d(CN) 118.9 118.8 118.9 118.8 118.9
7 90 54.3  66.6 585  65.0
H1P 0 241  14.7 207 5.2
hoP 41 43.9 446 36.4 43.4
HOMO—LUMO 65 62 69 64
HOMO-2—LUMO 15 17 25 16

2 pond distance between phenyl ring and amino gréupr the definition of the torsion
and the out-of-plane angles see Table 3.

hundreds of correlated electrons. This extends the afilityeof MP2 to systems which
else can only be treated with SCF or DFT methods. Calculationexcited states using
e.g. the approximate coupled-cluster singles and doubétksad CC2 or the perturbative
doubles correction to configuration interaction singlek$(D), are somewhat more in-
volved and structure optimizations for excited states beeguse of weakly avoided cross-
ings or conical intersections) much less straightforwaahtfor ground states. With the
parallel implementation of RI-CC2 they become still fesesiior molecules with more than
30 atoms and many hundred basis functions even if the malestructure has no point
group symmetry.
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