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Hartree-Fock theory is the conceptually most basic electronic structure method and also the
starting point for almost all wavefunction based correlation methods. Technically, the Hartree-
Fock self-consistent field method is often also the startingpoint for the development of molec-
ular Kohn-Sham density functional theory codes. We will briefly review the main concepts
of Hartree-Fock theory and modern implementations of the Rothaan-Hall self-consistent field
equations with emphasis on the techniques used to make theseapproaches applicable to large
systems. The second part of the chapter will focus on wavefunction based correlation methods
for large molecules, in particular second order Møller-Plesset perturbation theory (MP2) and,
for calculations on excited states, the approximate coupled-cluster singles-and-doubles method
CC2, both treating the electron-electron interaction correct through second order. It is shown
how the computational costs (CPU time and storage requirements) can be reduced for these
methods by orders of magnitudes using the resolution-of-the-identity approximation for elec-
tron repulsion integrals. The demands for the auxiliary basis sets are discussed and it shown
how these approaches can parallelized for distributed memory architectures. Finally a few pro-
totypical applications are reviewed.

1 Introduction

Today, essentially all efficient electronic structure methods are based on the Born-
Oppenheimer approximation and molecular orbital theory. The Hartree-Fock method com-
bines these two concepts with the variation principle and the simplest possible wave func-
tion ansatz obeying the Pauli exclusion principle: a Slaterdeterminant or, for open-shell
systems in restricted Hartree-Fock theory, a configurationstate function. In spite of the
fact that Hartree-Fock is since decades a matured quantum-chemical method, its imple-
mentation for large scale application is still today an active field of research. The reason
for this is not that there is a large interest in the results from the Hartree-Fock calculations
themselves. The driving force behind these developments are today the technical similar-
ity between Hartree-Fock (HF) theory and Kohn-Sham densityfunctional theory (DFT),
in particular if hybrid functionals are used, and the fact that Hartree-Fock calculations are
the starting point for almost all wavefunction based correlation methods. The challenge for
HF and DFT implementations is today an efficient prescreening of the numerical important
contributions and the storage of sparse matrices in large scale parallel calculations.

During the last decade also many wavefunction based correlation methods have been
proposed for applications on extended molecular systems. Most of them are based on the
so-called local correlation approach1–9, and/or on an extensive screening of small but of-
ten long ranging contributions to the correlation energy4, 10, 11. Some approaches introduce
empirical parameters or rely on a balance between certain contributions which in prac-
tice might or might not be given12–15. For most of these approaches it is not yet clear to
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which extend they can be developed in the near future into competitive methods for ex-
tended systems. In particular, if the reduction of the computational costs (compared to
more traditional implementations of quantum chemical methods) relies on a screening in
the atomic orbital (AO) basis set, calculations on extendedsystems are often only possible
with rather small basis sets which cannot supply the accuracy expected from a correlated
ab initio method.a Even though usually only explored for electronic ground states, most
of these approaches could in principle also be generalized to excited states. But for larger
molecules, calculations for excited states employ often so-called response methods and the
parameterization of the excited state used in these methodshampers the application of the
local correlation and related approaches.16–18

We will in the following not go into the details of these approaches, but restrict our-
self to discussion of to the underlying electronic structure methods, which are usually
single-reference coupled-cluster (CC) and, in particular, for larger systems Møller-Plesset
perturbation theory through second order (MP2) or related methods for excited states. The
implementation of the latter methods has during the last decade improved dramatically by
combining them with the so-called resolution-of-the-identity (RI) approximation for the
four-index electron repulsion integrals (ERIs) with optimized auxiliary basis sets. Even
without any further approximations are these methods todayapplicable to systems with up
to 100 or more atoms. Since the RI approximation depends little on the electronic structure
of the investigated system it does not diminish the applicability of the underlying electronic
structure methods. It is also compatible and can be combinedwith the above mentioned
screening based approaches to reduce further the computational costs.19, 20 Thus, it can be
expected that these two aspects, the treatment of the electron correlation through second
order and the RI approximation for ERIs will remain important ingredients also in future
correlated wavefunction based methods for extended systems.

In the following the theory of wavefunction based ab initio methods that treat the
electron-electron interaction correctly through second order is briefly reviewed. The em-
phasis will be on methods for excited states which can be related to the approximate
coupled-cluster singles-and-doubles model CC2, an approximation to the coupled-cluster
singles-and-doubles method (CCSD). In Sec. 7 it is shown howthe computational costs
for these methods can be reduced drastically by using the RI approximation and disc space
bottlenecks for these methods can be resolved by an doubles amplitudes-direct implemen-
tation. A recent parallel implementation for distributed memory architectures is presented
in Sec. 8 and some example applications with RI-MP2 and RI-CC2 are reviewed in Secs.
9 and 10.

2 The Born-Oppenheimer Approximation and the Electronic
Schrödinger Equation

An important simplification in the quantum mechanical description of molecules, which
is ubiquitously applied in electronic structure calculations is the Born-Oppenheimer (BO)
approximation which leads to a separation of the electronicfrom the nuclear degrees of

aHere and in the following we use “ab initio” for electronic structure methods which are systematically improv-
able in the sense that they are members of a hierarchy which converges to the exact solution of the electronic
Schrödinger equations, i.e. the full configuration interaction (Full CI) limit.

78



freedom. In the BO approximation the total Hamiltonian of molecular system is split in
the operator for the kinetic energŷTnuc of the nuclei and the remaining contributions which
are put into an electronic Hamiltonian̂Hel.

Ĥtot = T̂nuc + Ĥel (1)

In the non-relativistic case we have

T̂nuc = −
∑

A

1

2MA
∇̂2

A (2)

and the electronic Hamiltonian can be written in atomic units as

Ĥel(r,R) = −
∑

i

1

2
∇̂2

i −
∑

i,A

ZA

|RA − ri|
+
∑

i<j

1

|ri − rj |
+
∑

A<B

ZAZB

|RA −RB|
, (3)

where∇̂A and∇̂i are the gradients with respect to the coordinates of nucleusA and elec-
tron i, respectively,RA andri, andZA the charge of nucleusA.

The total wavefunction is approximated as product of an electronic and a nuclear wave-
function

Ψtot(r,R) ≈ Ψel(r,R)Ψnuc(R) . (4)

where the electronic wavefunction is determined as eigenfunction of the electronic Hamil-
tonian

Ĥel(r,R)Ψel(r,R) = Eel(R)Ψel(r,R) , (5)

and the nuclear wavefunction as solution of a nuclear Schrödinger equation
(

T̂nuc + Eel(R)
)

Ψnuc(r,R) = EtotΨnuc(r,R) , (6)

in which the eigenvalues of the electronic Hamiltonian,Eel(R), appear as potential for the
nuclear motion. It is therefore that we speak ofEel(R) as potential energy surfaces. Our
understanding of molecular structures as equilibrium positions on potential energy surfaces
are implicit results of the Born-Oppenheimer approximation.

One may ask, what are the errors of the BO approximation? Beside the simplified
wavefunction ansatz, Eq. (4), one neglects the so-called non-adiabatic coupling elementsb:

A
(A)(~R) =

∫

Ψel(r,R)∗
(

∇̂AΨel(r,R)
)

dr (7)

B(A)(~R) =

∫

Ψel(r,R)∗
(

∇̂2
AΨel(r,R)

)

dr (8)

There appear if the total Hamiltonian is applied toΨtot,

ĤtotΨtot = ĤelΨel(r,R)Ψnuc(R) + Ψel(r,R)T̂nucΨnuc(R) (9)

−
∑

A

1

2MA

{

2
(

∇̂AΨel(r,R
)

·
(

∇̂AΨnuc(R)
)

+
(

∇̂2
AΨel(r,R

)

Ψnuc(R)
}

= EtotΨtot ,

bNote thatA(A)(~R) is a three-dimensional vector in the coordinate space of nucleus A, while B(A)(~R) is
scalar.
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after integration over the electronic degrees of freedom:

ĤtotΨnuc =
(

T̂nuc + Eel(~R)
)

Ψnuc (10)

−
∑

A

1

2MA

{

2A(A)(R) · ∇̂A +B(A)(R)
}

Ψnuc = EtotΨnuc

The nuclear Schrödinger equation in Eq. (6) is obtained by neglecting in the last equation
the non-adiabatic coupling elementsA

(A)(R) andB(A)(R). The errors introduced by
the Born-Oppenheimer approximation are typically in the order of 0.1 kJ/mol and for the
majority of applications today completely negligible compared to other errors made in the
solution of the electronic and nuclear Schrödinger equations, Eqs. (5) and (6).

3 Slater Determinants

The Pauli principle requires that the electronic wavefunction Ψel is antisymmetric under
any permutation of two electronsi andj,

P̂ijΨel(r1, . . . , ri, . . . , rj , . . .) = Ψel(r1, . . . , rj , . . . , ri, . . .) (11)

= −Ψel(r1, . . . , ri, . . . , rj , . . .) .

The simplest ansatz fulfilling this condition are Slater determinants, antisymmetrized prod-
ucts of one-electron wavefunctions (orbitals):

ΨSD = 1√
n
Âψ1(r1) . . . ψn(rn) =

∣
∣
∣
∣
∣
∣
∣
∣
∣

ψ1(r1) ψ1(r2) . . . ψ1(rn)
ψ2(r1) ψ2(r2) . . . ψ2(rn)

...
...

. . .
...

ψn(r1) ψn(r2) . . . ψn(rn)

∣
∣
∣
∣
∣
∣
∣
∣
∣

(12)

The non-symmetrized orbital products are also known as Hartree products and will in the
following be denoted byΘ.

ΨSD = 1√
n
ÂΘ with Θ(r1, . . . , rn) = ψ1(r1) . . . ψn(rn) (13)

The antisymmetrizer̂A is defined as

Â =

n!∑

m=1

sign(Pm)P̂m (14)

whereP̂m is an operator which performs one of then! possible permutations of then
electrons andsign(Pm) the parity of this permutation. The group permutation opera-
tors has the property that if the whole set of alln! possible permutations ofn elements
{P̂1, P̂2, . . . , P̂n!} is multiplied with some permutation̂Pk the same set of operators is
recovered, just in a different orderc:

{P̂kP̂1, P̂kP̂2, . . . , P̂kP̂n!} = {P̂1, P̂2, . . . , P̂n!} . (15)

Furthermore, the permutation operatorsP̂m are unitary

P̂ †
m = P̂−1

m (16)

cThis relation is in group theory known as rearrangement theorem.
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whereP̂−1
m is the operator which performs the inverse permutation which has the same

parity asPm, i.e.sign(Pm) = sign(P−1
m ) and

{P̂−1
1 , P̂−1

2 , . . . , P̂−1
n! } = {P̂1, P̂2, . . . , P̂n!} . (17)

From these relations it follows that the antisymmetrizerÂ is an hermitian operator

Â† =
∑

m

sign(Pm)P̂ †
m =

∑

m

sign(P−1
m )P̂−1

m = Â , (18)

and

Â2 = n!Â . (19)

Both relations are useful for evaluating matrix elements (integrals) for slater determinants.
In the following we skip for convenience the indexel for the electronic Hamiltonian and
write it as

Ĥ = Enuc +
∑

i

ĥi +
∑

i<j

1

rij
(20)

with the nuclear repulsion energy and the one-electron hamiltonian defined as

Enuc =
∑

A<B

ZAZB

|RA −RB|
, (21)

and

ĥi = −1

2
∇̂2

i −
∑

A

ZA

|RA − ri|
, (22)

and the interelectronic distancesrij = |ri − rj |. Note that, because the summations are
over all electrons or electron pairs, the antisymmetrizerÂ commutes separately with the
one- and two-electron contributions to the HamiltonianĤ :

∑

i

ĥiÂ = Â
∑

i

ĥi and
∑

i<j

1

rij
Â = Â

∑

i<j

1

rij
(23)

For operators of this form we can rewrite the matrix elementsfor Slater determinants as
〈
ΨSD,I

∣
∣Ô|ΨSD,J

〉
=
〈

1√
n!
ÂΘI

∣
∣Ô
∣
∣ 1√

n!
ÂΘJ

〉
= 1

n!

〈
ÂΘI

∣
∣ÂÔ

∣
∣ΘJ

〉
(24)

= 1
n!

〈
Â2ΘI

∣
∣Ô
∣
∣ΘJ

〉
=
〈
ÂΘI

∣
∣Ô
∣
∣ΘJ

〉

The results have, however, only a simple form if the orbitalsψi are orthogonal to each
other. We will therefore in the following without loss of generality assume thatΘI andΘJ

are build from a common set of orthonormal orbitals

〈ψi|ψj〉 = δij (25)

and that the orbitals are ordered in the Hartree products according to increasing indices:

ΘI = ψI1 (r1)ψI2 (r2) . . . ψIn
(rn) with I1 < I2 < . . . < In (26)
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Overlap integrals then become

〈
ÂΘI

∣
∣ΘJ

〉
=

n!∑

m=1

sign(Pm)

n∏

k=1

〈ψIPm(k)
|ψJk
〉 =

n!∑

m=1

sign(Pm)

n∏

k=1

δIPm(k),Jk
(27)

wherePm(k) is the result at positionk after applying the permutationPm because of Eq.
(26) only the identity permutation can contribute to the result which is nonzero only if in
both Hartree products exactly the same orbitals are occupied. We thus find that

〈
ΨSD,I

∣
∣ΨSD,J

〉
=
〈
ÂΘI

∣
∣ΘJ

〉
= δI,J (28)

Similarly, one obtains for the matrix elements of one-electron operators:

〈
ÂΘI

∣
∣
∑

i

ĥi

∣
∣ΘJ

〉
=

n!∑

m=1

sign(Pm)

n∑

i=1

〈ψIPm(i)
|ĥi|ψJi

〉
n∏

k=1
k 6=i

〈ψIPm(k)
|ψJk
〉 . (29)

For an orthonormal orbital basis the matrix elements between two Slater determinants thus
become:

〈
ΨSD,I

∣
∣
∑

i

ĥi

∣
∣ΨSD,J

〉
=







n∑

k=1

〈ψIk
|ĥk|ψIk

〉 for I = J

〈ψk|ĥ|ψl〉 if ΨSD,I ,ΨSD,J differ only in ψk, ψl

0 otherwise
(30)

Nonvanishing matrix elements are obtained if the two Slaterdeterminants are identical or
differ at most in one orbital. The matrix elements for the two-electron operators become:

〈
ΨSD,I

∣
∣
∑

i<j

1
rij

∣
∣ΨSD,J

〉
=
〈
ÂΘI

∣
∣
∑

i<j

1
rij

∣
∣ΘJ

〉
(31)

=

n!∑

m=1

sign(Pm)

n∑

i<j

〈ψIPm(i)
ψIPm(j)

| 1
rij
|ψJi

ψJj
〉

×
n∏

k=1
k 6=i,j

〈ψIPm(k)
|ψJk
〉 ,

which reduces for orthonormal orbitals to:

〈
ΨSD,I

∣
∣
∑

i<j

1
rij

∣
∣ΨSD,J

〉
=







n∑

k<l

〈ψIk
ψIl
||ψIk

ψIl
〉 for I = J

∑

m

〈ψkψIm
||ψlψIm

〉 if ΨSD,I ,ΨSD,J differ
only inψk, ψl

〈ψiψj ||ψkψl〉
if ΨSD,I ,ΨSD,J differ
in ψi, ψk andψj , ψm

0 otherwise

(32)
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For two-electron operators non-vanishing matrix elementsare obtained for Slater determi-
nants which differ in up to two orbitals. The antisymmetrized integrals introduced on right
side of Eq. (32) are defined as:

〈ψiψj ||ψkψl〉 = (ψiψk|ψjψl)− (ψiψl|ψjψk) , (33)

with the two-electron integrals in the Mulliken notation given by

(ψiψj |ψkψl) =

∫

R3

∫

R3

ψ∗
i (r1)ψj(r1)

1

r12
ψ∗

k(r2)ψ
∗
l (r2) dr1 dr2 . (34)

The expectation value of the total electronic Hamiltonian for a Slater determinant with the
orthonormal occupied orbitalsψ1, . . . , ψn is thus given by:

〈
ΨSD

∣
∣Ĥ
∣
∣ΨSD

〉
= Enuc +

∑

i

〈
ψi

∣
∣ĥ
∣
∣ψi

〉
+

1

2

∑

ij

〈
ψiψj

∣
∣
∣
∣ψiψj

〉
. (35)

4 Hartree-Fock Theory and the Roothaan-Hall Equations

The basic idea behind Hartree-Fock theory is to take the simplest meaningful ansatz for
the electronic wavefunction, a Slater determinant, and to determine the occupied orbitals
by the variation principle, i.e. such that energy expectation value is minimized. For general
molecular or extended systems this scheme is usually combined with a basis set expansion
of the molecular orbitals.

ψi(1) =

N∑

ν=1

χν(r1)Cνi ·
{

α(1)

β(1)
, (36)

where{χν} is a basis set withN spatial functions andα undβ are spin function for, re-
spectively, the “spin up” and “spin down” states. For extended systems often plane wave
basis sets is used, but for molecular systems local atom centered basis sets (linear combi-
nation of atomic orbitals, LCAO) are more common.

To minimize the Hartree-Fock energy with respect to the MO coefficientscνi under the
constraint that theψi are orthonormal we introduce the Lagrange function,

LHF = Enuc +
∑

i

〈
i
∣
∣ĥ
∣
∣i
〉

+
1

2

∑

ij

〈
ij
∣
∣
∣
∣ij
〉

+
∑

ij

ǫji

(
δij −

〈
i
∣
∣j
〉)
. (37)

Here and in the following we skip for notational conveniencethe functionsψ andχ in the
brackets and give only there indices with the convention that i, j, . . . denote occupied MOs
and greek indices AOs. The Lagrange functionLHF is now required to be stationary with
respect to arbitrary variations of the MO coefficientsd:

dLHF

dC∗
νi

=
〈
ν
∣
∣ĥ
∣
∣i
〉

+
∑

k

〈
νk
∣
∣
∣
∣ik
〉
−
∑

j

ǫji

〈
ν
∣
∣j
〉

= 0 . (38)

dRequiring the derivativesdLHF/dCνi to vanish leads to equivalent complex conjugated equations.
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We now introduce the Fock and overlap matrices in atomic orbital basis{χν} as:

Fµν =
〈
µ
∣
∣ĥ
∣
∣ν
〉

+
∑

k

〈
µk
∣
∣
∣
∣νk
〉

(39)

=
〈
µ
∣
∣ĥ
∣
∣ν
〉

+
∑

κλ

Dκλ

{(
µν
∣
∣κλ
)
−
(
µλ
∣
∣κν
)}

, (40)

and

Sµν =
〈
µ
∣
∣ν
〉
, (41)

with AO density matrixD defined as:

Dκλ =
∑

k

C∗
κkCλk . (42)

Note that the Hartree-Fock energy can be calculated from theFock and densities matrices
and the matrix of elements of the one-electron hamiltonianhµν = 〈µ|ĥ|ν〉 as

EHF =
1

2

∑

µν

Dµν

(

Fµν + hµν

)

. (43)

With these intermediates Eq. (38) can be rewritten in a compact matrix form:

FC = SCǫ . (44)

The last equation is known under the name “Roothaan-Hall equation”. Its meaning be-
comes more clear if it is transformed to an orthonormal basisset

χ̃µ =
∑

ν

χν [S−1/2]νµ with S
−1/2

S
−1/2 = S

−1 , (45)

where[S−1/2]µν denotesethe elementµ, ν of the matrixS−1/2. In this basis the Roothaan-
Hall equations become
∑

ν

F̃µνC̃νi =
∑

j

C̃µjǫji with F̃ = S
−1/2

FS
−1/2 and C̃ = S

1/2
C . (46)

The result of the Fock matrix applied any occupied orbital isa linear combination of only
occupied orbitals. This condition determines the occupiedmolecular orbitals only up to a
unitary transformation of these orbitals among themselves, which leaves the Slater deter-
minant, i.e. the Hartree-Fock wavefunction, unchanged.

The so-called canonical orbitals are obtained by choosing this unitary transformation
such that the matrix with the lagrangian multipliersǫji becomes diagonal. Usually, the
equation is then augmented by a similar condition for the complementary space of un-
occupied or “virtual” orbitals. The Roothaan-Hall equations become then a generalized
nonlinear eigenvalue problem—nonlinear since the Fock matrix F depends through the
density matrixD on the solution of the equations. The standard algorithm to solve these
equations is the self-consistent field procedure which can be sketched as follows:

1. Initially a start density matrix is guessed (or constructed from some start orbitals, e.g.
from an extended Hückel calculation)

eNote that[S−1/2]µν 6= 1/
p

Sµν .
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2. The Fock matrixF and the total energy for the approximate density matrix are calcu-
lated using Eqs. (39) and (43).

3. The generalized eigenvalue problem Eq. (44) is solved to obtain a new set of MOs.

4. An improved density matrix is guessed from the present approximation for the MOs
and the previous density matrices using some convergence acceleration procedure.

5. If the total energy, the MOs and the density are converged (i.e. self-consistent) the
procedure is stopped, else one continuous with step 2.

The number of iterations needed to converge the self-consistent field procedure depends on
the molecular system (in particular its HOMO-LUMO gap), thequality of the start guess
and a lot on the method used to update the density matrix in step 4. A common choice is
the direct inversion of iterative subspaced (DIIS) technique of Pulay21, 22.

5 Direct SCF, Integral Screening and Integral Approximations

Apart from the technique used to solve the Roothaan-Hall equations, i.e. to update the
density matrix, a second technically demanding aspect is the construction of the Fock
matrix. A naive implementation of Eq. (39) would require thecalculation of≈ 1

8N
4 two-

electron integral, whereN is the dimension of our basis set in Eq. (36). To achieve a
useful accuracy, typically 10–30 basis functions are needed per atom. For many systems
of interest in computational chemistry today with 100 and more atoms the number of two-
electron integrals will even today exceed standard disc space capacities. Furthermore, a
brute force summation over all integrals would be unnecessary costly in terms of CPU
time: for local atom-center basis sets many of the two-electron integrals and, depending on
the HOMO-LUMO gap, also of the density matrix are numerically negligible; in extended
systems the number of numerically significant two-electroncoulomb integrals will only
grow withO(N 2), whereN is a measure of the system size. A solution to these problems
is offered by the integral-direct SCF scheme in combinationwith integral prescreening:

• The two-electron integrals are not stored once on stored on file, but instead
(re)calculated when needed and immediately contracted with the elements of the den-
sity matrix to increments of the Fock matrix. By exploiting the eightfold permuta-
tional symmetry

(µν|κλ) = (νµ|κλ) = (µν|λκ) = (νµ|λκ) = (47)

(κλ|µν) = (κλ|νµ) = (λκ|µν) = (λκ|νµ) (48)

of the two-electron integrals, one can restrict the loop over the AO indices toµ < ν,
andκ < λ with (µ, ν) < (κ, λ) and add for each two-electron integral the following
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6 increments to the Fock matrix:

Fµν ← Fµν + 2Dκλ(µν|κλ) (49)

Fκλ ← Fκλ + 2Dµν(µν|κλ) (50)

Fµλ ← Fµλ −Dνκ(µν|κλ) (51)

Fνλ ← Fνλ −Dµκ(µν|κλ) (52)

Fµκ ← Fµκ −Dνλ(µν|κλ) (53)

Fνκ ← Fνκ −Dµλ(µν|κλ) (54)

(Where we assumed for simplicity that all four AO indices aredifferent, else the
redundant increments have to be skipped.)

• To estimate whether a specific integral might be large enoughto make a significant
contribution to the Fock matrix one exploits e.g. the Schwarz conditionf:

|(µν|κλ)| ≤ QµνQκλ with Qµν =
√

(µν|µν) . (55)

For a given index quadruple the integral(µν|κλ) needs only to be calculated if

QµνQκλDmax ≥ τ (56)

where

Dmax = max{2|Dµν|, 2|Dκλ|, |Dνκ|, |Dµκ|, |Dνλ|, |Dµλ|} , (57)

andτ is a user-defined threshold that determines the numerical accuracy of the calcu-
lation. Only if the inequality is fulfilled any of the contributions to the Fock matrix in
Eqs. (49) – (54) can become larger than the thresholdτ . This technique is today stan-
dard in essentially all direct Hartree-Fock codes and also in molecular DFT codes for
so-called Hybrid functional with an Hartree-Fock-like “exact exchange” contribution.

For large systems the integral-screening reduces the computational costs for the Fock ma-
trix construction fromO(N 4) to O(N 2). If we split the two-electron part of the Fock
matrix into separate Coulomb and exchange contributions,

Fµν = hµν + Jµν −Kµν , (58)

with

Jµν =
∑

κλ

Dκλ(µν|κλ) , and Kµν =
∑

κλ

Dκλ(µλ|κν) , (59)

the remainingO(N 2) scaling is caused by the Coulomb contribution while for the ex-
change part the integral screening reduces the number of requires contributions asymptot-
ically toO(N ) if the HOMO-LUMO gap does not vanish and the density matrix becomes
sparse. This becomes more clear if the parameterDmax for the Coulomb and exchange
contributions to the Fock matrix are calculated separately:

Coulomb: Dmax,C = max{2|Dµν|, 2|Dκλ|} (60)

exchange: Dmax,X = max{|Dνκ|, |Dµκ|, |Dνλ|, |Dµλ|} (61)

fThe Schwarz condition for two-electron integrals is a special case of a Cauchy-Schwarz inequality for scalar
products in vector space:|〈x, y〉| ≤ ||x|| · ||y|| with ||x|| =

p

〈x, x〉.
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The size of the absolute values of the density matrix elementsDµν and of the quantities
Qµν are correlated with the overlap of the basis functionsχµ andχν . Thus,Dmax,C

becomes usually only small if also the integral|(µν|κλ)| ≤ Qµν · Qκλ is small, while in
the exchange case the density matrix elements contributingto Dmax,X have indices then
theQ’s and criterionQµνQκλDmax,X will only be fulfilled if all four basis functionsµ,
ν, κ, andλ are close in space.

Also, for medium sized molecules or with basis sets which contain diffuse functions
only modest computational savings obtained with this technique and the large costs for
the individual two-electron integrals can hamper the applicability of Hartree-Fock self-
consistent field calculations. An approximation which leads to a significant reduction of
the computational costs for the Coulomb contribution to theFock matrix construction is
the resolution-of-the-identity approximation for the two-electron integrals which is also
known as density fitting:

(µν|κλ) ≈ (µν|Q) [V−1]QP (P |κλ) , (62)

where(µν|Q) andVPQ are, respectively, three- and two-center two-electron integrals:

(µν|Q) =

∫

R3

∫

R3

χ∗
µ(r1)χν(r2)

1

r12
Q(r2) dr1dr2 , (63)

VPQ = (Q|P ) =

∫

R3

∫

R3

P (r1)
1

r12
Q(r2) dr1dr2 . (64)

Within this approximation the Coulomb matrixJµν can be calculated as:

γP =
∑

κλ

(P |κλ)Dκλ (65)

∑

Q

VPQcQ = γP (66)

Jµν ≈
∑

Q

(µν|Q)cQ (67)

Where Eq. (66) is linear equation system forcQ. In combination with an integral screening
based on the Schwarz inequality these three equations can also be implemented with an
asymptotic scaling ofO(N 2), but a significant lower prefactor than the original method,
since there are fewer two- and three-center two-electron integrals and the computational
costs for them are lower than for the four-center two-electron integrals(µν|κλ). We opti-
mized auxiliary basis sets{Q}, which are today available for several standard basis sets,
the errors introduced by the RI approximation are insignificant compared to the basis in-
completeness error of the LCAO expansion in Eq. (36).

6 Second Order Methods for Ground and Excited States

Second order Møller-Plesset perturbation theory is a conceptually simple and technically
the most simplest ab initio correlation method. It can be derived by expanding the solution
of the electronic Schrödinger equation as a Taylor series in the fluctuation potential (vide
infra). This can be done either in the framework of configuration interaction theory or
using the single-reference coupled-cluster ansatz for thewavefunction.23 We will take here
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the latter starting point to have a close connection to coupled-cluster response and related
methods for excited states. In the coupled-cluster ansatz the wavefunction is parameterized
as

|CC〉 = exp(T̂ )|HF〉 (68)

with the cluster operator defined as

T̂ = T̂1 + T̂2 + T̂3 + . . . (69)

where

T̂1 =
∑

µ1

tµ1 τ̂µ1 =
∑

ai

tiaτ̂
i
a , T̂2 =

∑

µ2

tµ2 τ̂µ2 =
∑

aibj

tijabτ̂
ij
ab , . . . (70)

The coefficientstµi
are called cluster amplitudes and the excitation operatorsτ̂µi

gener-
ate all possible single, double, and higher excited determinants if applied on the ground
state Hartree-Fock (HF) determinant|HF〉. Here and in the following, we use the conven-
tion that indicesi, j, . . . denote occupied,a, b, . . . virtual, andp, q, . . . arbitrary molecular
orbitals (MOs).

Inserting the ansatz (68) into the electronic Schrödingerequation and multiplying from
the left withexp(−T̂ ) one gets

exp(−T̂ )Ĥ exp(T̂ )|HF〉 = E|HF〉 . (71)

Projecting the above form of the Schrödinger equation ontothe HF determinant and a
projection manifold of (suitable linear combinations of) excited determinants one obtains
an expression for the ground state energy

E = 〈HF| exp(−T̂ )Ĥ exp(T̂ )|HF〉 = 〈HF|Ĥ exp(T̂ )|HF〉 , (72)

and the cluster equations

0 = 〈µi| exp(−T̂ )Ĥ exp(T̂ )|HF〉 , (73)

which determine the amplitudestµi
. Since we have not yet made any approximation, the

above equations still give the exact ground state solution of the electronic Schrödinger
equation. Truncating the cluster operator (69) after the single (T̂1) and double (̂T2) excita-
tions gives the coupled-cluster singles-and-doubles (CCSD) method, truncating it after̂T3

the CCSDT method, and so on.g

Expressions for Møller-Plesset perturbation theory are found by splitting the Hamilto-
nian into the Fock operator̂F as zeroth-order and the electron-electron fluctuation potential
as first-order contribution to the Hamiltonian

Ĥ(0) = F̂ , Ĥ(1) = Φ̂ = Ĥ − F̂ , (74)

and expanding Eqs. (72) and (73) in orders of the fluctuation potential. If the Brillouin-
Theorem is fulfilled and〈ia|Ĥ|HF〉 = 0, i.e. for a closed-shell or an unrestricted open-shell
Hartree-Fock (UHF) reference, the MP2 energy is obtained as

EMP2 = 〈HF|Φ̂T̂ (1)
2 |HF〉 =

∑

aibj

tijab〈HF|Φ̂|ab
ij 〉 (75)

gSimilar as in configuration interaction theory, a truncation after single excitations (CCS) does not give a useful
method for the calculation of ground state energies. As follows from the Brillouin theorem〈ia|Ĥ|HF〉 = 0,
the cluster equations have then for a closed-shell or an unrestricted open-shell reference determinant the trivial
solutiontia = 0 and the CCS energy becomes equal the HF energy.
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with

0 = 〈ab
ij |[F̂ , T̂ (1)

2 ] + Φ̂|HF〉 ⇔ tijab =
〈ab
ij |Φ̂|HF〉

ǫi − ǫa + ǫj − ǫb
(76)

where we assumed canonical molecular orbitals andǫp are the orbital energies.
Møller-Plesset perturbation theory can not straightforwardly be applied to excited

states, since wavefunctions for excited states usually require a multi-reference treatment.
For reviews on multi-reference many-body perturbation theory and its application on elec-
tronically excited states see e.g. Refs. 24,25. Correlatedsecond order methods for the cal-
culation of excitation energies based on a single-reference treatment for electronic ground
states can, however, be derived within the framework of coupled-cluster response theory.
The idea behind response theory is to study a system exposed to time-dependent exter-
nal (e.g. electric) fields and to derive from the response of the wavefunction or density
the frequency-dependent properties of the system—for example polarizabilities and hyper-
polarizabilities. The latter properties have singularities whenever a frequency of a field
becomes equal to the excitation energy of an allowed transition in the system. Thus, from
the poles of frequency-dependent properties one can identify the excitation energies.

Consider a quantum mechanical system described in the unperturbed limit by the time-
independent Hamiltonianh Ĥ(0) which is perturbed by a time-dependent potential:

Ĥ(t, ǫ) = Ĥ(0) + V̂ (t, ǫ) . (77)

We assume that the perturbationV̂ can be expanded as a sum over monochromatic Fourier
components

V̂ (t, ǫ) =
∑

j

V̂jǫje
−iωjt , (78)

whereV̂j are hermitian, time-independent one-electron operators (e.g. for an electric field
the dipole operator),t the time andǫj are the amplitudes of the associated field strengths.
Then the full time-dependent wavefunction of the system, i.e. the solution to the time-
dependent Schrödinger equation, can be expanded as a powerseries in the field strengths
as

Ψ(t) =
[

Ψ(0) +
∑

j

Ψ
(1)
j (ωj)ǫje

−iωjt + . . .
]

︸ ︷︷ ︸

phase-isolated wavefunctioñΨ

e
−i

R

t

t0
dt′〈Ψ̃(t)|Ĥ(t′,ǫ)−i ∂

∂t′
|Ψ̃(t)〉

, (79)

and an expectation value for an operatorµ̂ as

〈µ〉(t) = 〈Ψ̃(t)|µ̂|Ψ̃(t)〉 = µ(0) +
∑

j

〈〈µ;Vj〉〉ωj
ǫje

−iωjt + . . . (80)

For detailed reviews of modern response theory and its implementation for approximate
wavefunction methods the interested reader is referred to Refs. 26–31. The important point
for the calculation excitation energies is that the poles inthe response functions〈〈µ;V 〉〉ω
occur whenω becomes equal to an eigenvalue of the stability matrix of theemployed

hNote thatĤ(0) includes here the fluctuation potential in difference to Eq.(74), where the fluctuation potential
Φ̂ has been the perturbation.
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electronic structure method for the unperturbed system. The stability matrix contains the
derivatives of the residua of the equations which determinethe wavefunction parameters
with respect to these parameters. For Hartree-Fock, multi-configurational self-consistent
field (MCSCF), density functional theory (DFT), configuration interaction (CI) or other
methods which are variational in the sense that the wavefunction parameters are deter-
mined by minimization of the energy, the stability matrix isthe so-called electronic Hesse
matrix—the matrix of the second derivatives of the energy with respect to the wavefunc-
tion parameters. For coupled-cluster methods the cluster amplitudes are determined by the
cluster equations (73). Arranging the residua in a vector function

Ωµi
(tνi

) = 〈µi| exp(−T̂ )Ĥ exp(T̂ )|HF〉 , (81)

the stability matrix is given by the Jacoby matrix

Aµiνj
=
dΩµi

dtνj

∣
∣
∣
∣
ǫ=0

= 〈µi| exp(−T̂ )[Ĥ, τ̂νj
] exp(T̂ )|HF〉 , (82)

where|ǫ=0 indicates that the derivatives are taken for the unperturbed system, i.e. at zero
field strengths. In configuration interaction theory the stability matrix becomes the matrix
representation of the reduced HamiltonianĤ−E0 (whereE0 is the ground state energy) in
the space orthogonal to the electronic ground state.i In coupled-cluster theory this matrix
representation is obtained in a similarity transformed basis.j

In this way excitation energies can in principle be derived for any electronic structure
method. However, to obtain physical meaningful and accurate results, the method has to
fulfill certain requirements. For example from the equations for the amplitudes in MP2,
Eq. (76), one obtains a Jacoby matrix which gives only excitation energies corresponding
to double excitations and these would be equal to the orbitalenergy differences in the de-
nominator of the amplitudes. The two most important requirements are firstly, that there
must be a one-to-one correspondence between the parametersof the wavefunction and
at least the investigated part of the spectrum of the Hamiltonian. This requires methods
which determine the time-dependent variables by a single set of equations, as e.g. time-
dependent Hartree-Fock (HF-SCF), density functional theory (DFT) or multi-configuration
self-consistent field (MCSCF, CASSCF, or RASSCF), but not a time-dependent configu-
ration interaction (CI) treatment on top of a time-dependent HF-SCF calculation. For this
reason the coefficients of the Hartree-Fock orbitals are also above in Eqs. (81) and (82)
not considered as parameters of the time-dependent wavefunction, since this second set of
variables in the time-dependent problem would lead to a second set of eigenvalues corre-
sponding to single excited states, additionally to the one obtained from the parameteriza-
tion through the singles cluster amplitudes. Instead, the time-dependent wavefunction is in
coupled-cluster response theory usually constructed using the (time-independent) orbitals
of the unperturbed system with time-dependent cluster amplitudes. Secondly, to obtain
accurate results the stability matrix must also provide an accurate approximation of the
those blocks of the Hamiltonian which are most important forthe investigated states. For
single excitations these are the singles-singles blockAµ1ν1 and the off-diagonal blocks

i In connection with CI and propagator methods (approximate)matrix representations of̂H − E0 are often also
referred to as secular matrix.
j〈µi| exp(−T̂ ) for the bra andexp(T̂ )|µj〉 for the ket states, where|µj〉 = τ̂µj |HF〉; for further details see
e.g. Ref. 23
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Aµ2ν1 and Aµ1ν2 next to it. With the usual single-reference coupled-cluster methods
these blocks are described most accurately and therefore the excitation energies for single
excitation dominated transitions are obtained with the highest accuracy, while excitation
energies for double and higher excitations are usually considerably less accurate.

Already at the coupled-cluster singles (CCS) level (which for excitation energies is—
in contrast to ground state calculations—not equivalent toHartree-Fock, but to configura-
tion interaction singles (CIS)), excitation energies for states dominated by single replace-
ments of one spin-orbital in the Hartree-Fock reference determinant are obtained correctly
through first order in the electron-electron interaction.

A second order method for excited states which accounts for the above requirements
and takes over the accuracy of MP2 to excited states dominated by single excitations can be
derived by approximating the cluster equations to lowest order in the fluctuation potential.
But in difference to the derivation of MP2 in Eqs. (74) – (76) we allow in the Hamiltonian
for an additional one-electron perturbation

Ĥ(t) = F̂ + Φ̂ + V̂ (t) , (83)

which can induce transitions to single excitations and has,as necessary in CC response
theory, not been included in the Hartree-Fock calculation.Because of the latter, single
excitation amplitudes contribute now to the cluster operator already in zeroth order in the
fluctuation potential,̂Φ, and in first orderT̂1 and T̂2 both contribute to the wavefunc-
tion. Approximating the equations that determine these amplitudes to second (singles) and
first order (doubles) one obtains the equations for the approximate coupled-cluster model
CC232, 33:

0 = 〈ai |[ ˆ̃H, T̂2] +
ˆ̃H |HF〉 , (84)

0 = 〈ab
ij |[F̂ , T̂2] +

ˆ̃H |HF〉 , (85)

where a similarity transformed Hamiltoniañ̂H = exp(−T̂1)Ĥ exp(T̂1) has been intro-
duced to obtain a compact notation. In difference to MP2 the equations for CC2 have to
be solved iteratively because of the coupling introduced byT̂1. The ground state energy
obtained from CC2

ECC2 = 〈HF|Φ̂(T̂2 + 1
2 T̂1T̂1)|HF〉 , (86)

is, as for MP2, (only) correct through second order in the fluctuation potentialk, but it
leads to a Jacoby matrix with the singles-singles blockAµ1ν1 correct through second order
and the off-diagonal blocksAµ1ν2 andAµ2ν1 correct through first-order in the fluctua-
tion potential, while the doubles-doublesAµ2ν2 block is approximated by the zeroth-order
term:

A
CC2 =

(

〈ai |[( ˆ̃H + [ ˆ̃H, T̂2]), τ̂
c
k |HF〉 〈ai |[ ˆ̃H, τ̂cd

kl ]|HF〉
〈ab
ij |[ ˆ̃H, τ̂c

k ]|HF〉 〈ab
ij |[F̂ , τ̂cd

kl ]|HF〉

)

. (87)

CC2 is the computational simplest iterative coupled-cluster model which gives single exci-
tation energies which are correct through second order. Through the similarity transformed

kTherefore, CC2 does in general not describe ground state energies, structures, or properties more accurately
than MP2. Its advantage upon MP2 is that, combined with coupled-cluster response theory, it can (in contrast to
the latter) applied successfully to excited states.
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Hamiltonian ˆ̃H = exp(−T̂1)Ĥ exp(T̂1) the Jacoby matrix in Eq. (87) includes, however,
also some higher-order terms, since for the unperturbed system the single excitation ampli-
tudestµ1 contribute only in second- and higher orders to the ground state wavefunction.l

Excluding these terms and replacing the doubles amplitudesby the first-order amplitudes,
Eq. (76), from which the MP2 energy in calculated, one obtains the Jacoby matrix of
the CIS(D∞) approximation37, an iterative variant of the perturbative doubles correction38

CIS(D) to CIS (or CCS):

A
CIS(D∞) =

(
〈ai |[(Ĥ + [Ĥ, T̂2]), τ̂

c
k |HF〉 〈ai |[Ĥ, τ̂cd

kl ]|HF〉
〈ab
ij |[Ĥ, τ̂c

k ]|HF〉 〈ab
ij |[F̂ , τ̂cd

kl ]|HF〉

)

. (88)

This Jacobian contains the minimal number of terms requiredto obtain the excitation ener-
gies for single replacement dominated transitions correctthrough second order. However,
it is not possible to construct a coupled-cluster model which leads exactly to such a Jacoby
matrix.

The computational savings of CIS(D∞) compared to CC2 are rather limited37 and CC2
has, as a member of the hierarchy of coupled-cluster methodsCCS, CC2, CCSD, CC3,
CCSDT,. . . certain conceptual advantages. The Jacoby matrix of the CIS(D∞) approxi-
mation may, however, used as starting point to derive the perturbative doubles correction
CIS(D) to the CIS (or CCS) excitation energies37:

ω(D) =
∑

µ1ν1

ECIS
µ1

[

A
CIS(D∞)
µ1ν1

−A
CIS
µ1ν1

+
∑

κ2

A
CIS(D∞)
µ1κ2 A

CIS(D∞)
κ2ν1

ωCIS − ǫκ2

]

ECIS
ν1

(89)

or

ωCIS(D) = ωCIS + ω(D) =
∑

µ1ν1

ECIS
µ1

[

A
CIS(D∞)
µ1ν1

+
∑

κ2

A
CIS(D∞)
µ1κ2 A

CIS(D∞)
κ2ν1

ωCIS − ǫκ2

]

ECIS
ν1

(90)
whereǫκ2 contains the orbital energy difference for a double excitation, ǫijab = ǫa − ǫi +
ǫb − ǫj .

Another second order method for excited states which is related to CC2 and CIS(D) is
the so-called algebraic diagrammatic construction through second order, ADC(2).39, 40 The
secular matrix of ADC(2) is just the symmetric part ofA

CIS(D∞):

A
ADC(2) = 1

2A
CIS(D∞) + 1

2

(

A
CIS(D∞)

)†
, (91)

which leads to some conceptual and also computational simplifications e.g. in the calcula-
tion of derivatives (gradients!) since the left and right eigenvectors of a symmetric matrix
are identical, while for the non-symmetric Jacoby matricesof CC2 and CIS(D∞) left and
right eigenvectors differ. Both eigenvectors are needed for the calculation of derivatives.
Other second order methods for excited states are the secondorder polarization propa-
gator approach,41, 42 SOPPA and the perturbative doubles correction,43 RPA(D), to time-
dependent Hartree-Fock, which for excitation energies is also known as the random phase

lWe assume here that the Brillouin theorem is fulfilled and thus the occupied/virtual block of the Fock matrix
vanishes. This holds for closed-shell and unrestricted open-shell Hartree-Fock reference states. For a discussion
of additional terms that need to be accounted for in restricted open-shell SCF based calculations we refer e.g. to
Refs.34–36.
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approximation (RPA). The latter method can also be understood as a non-iterative approx-
imation to SOPPA, similar as CIS(D) is a non-iterative approximation to CIS(D∞). The
relation of RPA(D) and SOPPA to the single-reference coupled-cluster response methods
is somewhat more difficult, since these methods are members of a different hierarchy of
methods (with RPA (TDHF) as first-order model) which is related to the so-called orbital-
optimized coupled-cluster (OCC) methods44, 45. Therefore, these methods will not be dis-
cussed in detail in the following, but we note that the same concepts (doubles amplitude-
direct formulation and RI-approximation) can by applied toreduce also for these the com-
putational costs to the same extend as for CC2, ADC(2), CIS(D∞), and CIS(D).

6.1 Doubles amplitude-direct formulation of second order methods

An important feature of second order methods or approximatedoubles methods, as one
might also call them, is that an explicit storage (in RAM or ondisk) of complete sets of
double excitation amplitudes can be avoided similar as the storage of triples amplitudes is
avoided in the approximate triples methods CCSD(T), CCSDT-1, CCSDR(3), or CC3.46–49

This is important for applications on large molecules sincesimilar as for the approximate
triples methods the storage of the amplitudes would prohibit large-scale applications sim-
ply by a storage space or I/O bottleneck.

For example, the MP2 energy can be calculated without storing the double excitation
amplitudes using the following schemem:

do i = 1, nocc
do j = i, nocc
do a = 1, nvirt
do b = b, nvirt
tijab = (ia|jb)/(ǫi − ǫa + ǫj − ǫb)
EMP2 = EMP2 + (2− δij){2(ia|jb)− (ia|jb)}tijab

end do
end do

end do
end do

In a similar way also the equations for the doubles amplitudes in CC2 can—for
given singles amplitudestia—immediately be inverted to

tijab = ˜(ai|bj)/(ǫi − ǫa + ǫj − ǫb) (92)

where the similarity transformation withexp(T̂1) has been included in the AO-to-MO
transformation for the modified two-electron integrals

˜(ai|bj) =
∑

α

Λp
αa

∑

β

Λh
βi

∑

γ

Λp
γb

∑

δ

Λh
δj (αβ|γδ) (93)

with Λp
αa = Cαa −

∑

k Cαkt
k
a andΛh

αi = Cαi +
∑

c Cαct
i
c. Inserting Eq. (92) into the

equation for the singles amplitudes, Eq. (84), gives a set ofeffective equations for the CC2

mThe explicit formulas given here and below are for a closed-shell restricted Hartree-Fock reference determinant.
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singles amplitudes, which reference the doubles amplitudes tijab only as intermediates,
which can be calculated and contracted with one- and two-electron integrals “on-the-fly”
without storing a complete set of these amplitudes on disk:

do i = 1, nocc
do j = 1, nocc
do a = 1, nvirt
do b = 1, nvirt

tijab = ˜(ai|bj)/(ǫi − ǫa + ǫj − ǫb)

Ωci = Ωci +
∑

abj(2t
ij
ab − t

ij
ba) ˜(jb|ca)

Ωak = Ωak −
∑

bij(2t
ij
ab − t

ij
ba) ˜(jb|ik)

...
end do

end do
end do

end do

To avoid the storage of doubles amplitudes is even more important for excited states, since
in this case else doubles contributions to eigen- or trial vectors would have to be stored
for several simultaneously solved eigenvalues and a numberof iterations. An explicit
reference to the doubles part of eigen- or trial vectors during the solution of the eigen
problem can for the approximate doubles methods be removed by exploiting the particular
structure of the Jacoby or secular matrices of these methods, in which the doubles-doubles
block is in the canonical orbital basis diagonal with the diagonal elements equal to SCF
orbital energy differences:

(
Aµ1ν1 Aµ1ν2

Aµ2ν1 δµ2ν2ǫν2

)(
Eν1

Eν2

)

= ω

(
Eν1

Eν2

)

. (94)

The doubles part of the eigenvectors is thus related to the singles part and the eigenvalue
through the equation

Eµ2 =

∑

ν1
Aµ2ν1Eν1

ω − ǫµ2

. (95)

which allows to partition the linear eigenvalue problem in the space of singles and doubles
replacements as an effective eigenvalue problem in the space of only the single excitations:

∑

ν1

[

Aµ1ν1 +
∑

κ2

Aµ1κ2Aκ2ν1

ω − ǫκ2

]

Eν1 =
∑

ν1

A
eff
µ1ν1

(ω)Eν1 = ωEµ1 . (96)

The last equation is, however, in difference to Eq. (94) a nonlinear eigenvalue problem
because the effective Jacoby matrixA

eff
µ1ν1

(ω) depends on the eigenvalueω, which is itself
first known when the equation has been solved. But with iterative techniques this eigen-
value problem can be solved almost as efficiently as the original linear eigenvalue problem
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and the elimination of the need to store the doubles part of solution or trial vectors more
than compensates this complication.50

To apply these iterative techniques for the solution of large-scale eigenvalue problems
one needs to implement matrix vector products of the form

σµ1(ω, bν1) =
∑

ν1

A
eff
µ1ν1

(ω)bν1 =
∑

ν1

Aµ1ν1bν1 +
∑

κ2

Aµ1κ2

∑

ν1
Aκ2ν1bν1

ω − ǫκ2

. (97)

Note the similarity of the quotient in the last term with the expression in Eq. (95). For CC2
this term becomes

bijab =
1

ǫiajb

∑

ck

Aiajb,kcb
k
c =

∑

ck〈ab
ij |[ ˆ̃H, τ̂k

c ]|HF〉bkc
ǫi − ǫa + ǫj − ǫb + ω

=
2 ¯(ai|bj)− ¯(bi|aj)

ǫi − ǫa + ǫj − ǫb + ω
, (98)

with the modified MO electron repulsion integrals

¯(ai|bj) = P̂ ij
ab

∑

αβ

(

Λ̄p
αaΛh

βi + Λp
αaΛ̄h

βi

)∑

γδ

Λp
γbΛ

h
δj (αβ|γδ) , (99)

where Λ̄p
αa = −∑k Cαkb

k
a, Λ̄h

αi = +
∑

c Cαcb
i
c and P̂ ij

ab a symmetrization operator
defined throughP̂ ij

abfia,jb = fia,jb + fjb,ia. The linear transformation in Eq. (97) can
thus be calculated using a similar algorithm as for the residuum of the ground state cluster
equations without storing any doubles vectors:

do i = 1, nocc
do j = 1, nocc
do a = 1, nvirt
do b = 1, nvirt
bijab = ¯(ai|bj)/(ǫi − ǫa + ǫj − ǫb + ω)

σci = σci +
∑

abj(2b
ij
ab − b

ij
ba) ˜(jb|ca)

...
tijab = ˜(ai|bj)/(ǫi − ǫa + ǫj − ǫb)
σai = σai +

∑

bj(2t
ij
ab − t

ij
ba)
∑

ck[2(jb|kc)− (jc|kb] bck

end do
end do

end do
end do

The fact that the doubles amplitudes of CC2 are determined bythe singles ampli-
tudes through Eqs. (92) and (93) and reduce fortµ1 → t

(1)
µ1 = 0 to the first-order

amplitudes of MP2, opens a simple possibility to implement CIS(D∞) and CIS(D) as
approximations to CC2. Considering the effective Jacoby matrix, Eq. (96), as a functional
of the singles amplitudesAeff (tµ1 , ω) one obtains the connection:
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CC2 :
∑

ν1
A

eff
µ1ν1

(tCC2
κ1

, ω)Eν1 = ωEµ1

CIS(D∞) :
∑

ν1
A

eff
µ1ν1

(t
(1)
κ1 , ω)Eν1 = ωEµ1

CIS(D) : ωCIS(D) =
∑

µ1ν1
ECIS

µ1
A

eff
µ1ν1

(t
(1)
κ1 , ω)ECIS

ν1

The attentive reader has probably observed that the partitioned, doubles amplitude-direct
formulation for second order methods—although it removes the need to store complete
sets of any doubles amplitudes—does alone not reduce much the storage requirements of
these methods: the calculation of the doubles amplitudes requires the electron repulsion
integrals (ERIs) in the (modified) MO basis, which are obtained through four-index trans-
formations from the AO integrals, as e.g. in Eqs. (93) and (99). Efficient implementations
of such transformations require the storage of an array withhalf-transformed integrals of
the size of12O

2N2, whereO is the number of occupied andN the number of atomic or-
bitals, which is even slightly more than needed for the doubles amplitudes. For CC2 and
also for the other second order methods for excited states and in the calculation of gradi-
ents for the MP2 energies, the doubles amplitudes need to be contracted in addition with
two-electron integrals with three occupied or virtual indices,(ai|jk) and(ai|bc), which
within the schemes sketched above would give rise to even larger storage requirements.
The problem can be solved with the resolution-of-the-identity approximation for electron
repulsion integrals.

7 The Resolution-of-the-Identity Approximation for ERIs

The main idea behind the resolution-of-the-identity approximation51–58 for electron repul-
sion integrals can be sketched as follows: With increasing atomic orbital basis sets the
products of AOs appearing for the electrons 1 and 2 in the expression for the four-index
two-electron integrals,

(αβ|γδ) =

∫

R3

∫

R3

χα(~r1)χβ(~r1)
1

r12
χγ(~r2)χδ(~r2)dτ1dτ2 , (100)

will soon become (numerically) highly linear dependent andthus it should be possible to
expand these products which good accuracy in a basis set of auxiliary functionsQ,

χα(~r1)χβ(~r1) ≈
∑

Q

Q(~r1)cQ,αβ (101)

with a dimension much smaller then that of the original product space,N(N + 1)/2, as
illustrated in Fig. 1 for an atom with onlys-type functions. The coefficientscQ,αβ can be
determined through a least square procedure. Defining the remaining error in the expansion
of an orbital pair

Rαβ(~r1) = χα(~r1)χβ(~r1)−
∑

Q

Q(~r1)cQ,αβ , (102)

the quadratic error in the coulomb repulsion integrals(αβ|γδ) can be written as

(Rαβ |Rγδ) =

∫

R3

∫

R3

Rαβ(~r1)
1

r12
Rγδ(~r2)dτ1dτ2 (103)

96



0.1

1

10

100

1000

AOsχµ productsχµχν auxiliary fcts.Q

G
T

O
ex

p
o

n
en

t

Figure 1. The left column shows exponentsαµ of an even-tempered (13s) atomic Gaussian type orbital (GTO)
basisχµ(r) = exp(−r2αµ) and the column in the middle the exponents of all 169 overlap Gaussian functions
resulting on the same atom from the productsχµχν . The right column shows the exponents of an even-tempered
(25s) auxiliary basisQ(r) = exp(−r2αQ) set which could be used to expand these products.

and fulfill the Schwartz inequality

(Rαβ |Rγδ) ≤
√

(Rαβ |Rαβ)
√

(Rγδ|Rγδ) . (104)

Minimization of (Rαβ |Rαβ) with respect to the expansion coefficientsc leads to the linear
equation:

d

dcQ,αβ
(Rαβ |Rαβ) = 0 ⇔ (Rαβ |Q) = 0 ⇔ (αβ|Q) −

∑

P

cP,αβ(P |Q) = 0

(105)
with

(P |Q) =

∫

R3

∫

R3

P (~r1)
1

r12
Q(~r2)dτ1dτ2 , (106)

(αβ|Q) =

∫

R3

∫

R3

χα(~r1)χβ(~r1)
1

r12
Q(~r2)dτ1dτ2 . (107)

Arranging the two-center integrals in a matrixVPQ = (P |Q) the expansion coefficients
can be expressed as

cQ,αβ =
∑

P

(αβ|P )[V −1]PQ , (108)
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and one obtains for the four-index coulomb integrals the approximation

(αβ|γδ) ≈
∑

QP

(αβ|Q)[V −1]QP (P |γδ) . (109)

We have above derived Eq. (109) as result of a least square fitting procedure for the over-
lap densitiesχα(~r)χβ(~r), which is why this approximation is also known as “density fit-
ting”19, 20. Eq. (109) can be compared with the expression for an (approximate) resolution
of the identity for square integrable functions in three-dimensional space,

1 ≈
∑

QP

|Q〉[S−1]QP 〈P | with SPQ =

∫

R3

Q(~r)P (~r)dτ , (110)

applied to four-center overlap integrals
∫

R3

χα(~r)χβ(~r)χγ(~r)χδ(~r)dτ = 〈αβ|δγ〉 ≈
∑

QP

〈αβ|Q〉[S−1]QP 〈P |δγ〉 . (111)

We see that Eq. (109) can alternatively be viewed as an (approximate) resolution of the
identity in a Hilbert space where the coulomb operator1/r12 is used to define the scalar
product as in Eqs. (100) and (103). This approximation has thus all properties expected
from a resolution-of-the-identity or basis set approximation as e.g. that the norm of the
error in the expansion||Rαβ || = (Rαβ |Rαβ) will always decrease with an extension of
the auxiliary basis and that the approximation becomes exact in the limit of a complete
auxiliary basis set{Q}.

It is important to note that the resolution-of-the-identity approximation does not—or at
least not in general—reduce the computational costs for thecalculation of AO four-index
electron repulsion integrals, since the right hand side of Eq. (109) is more complicated to
evaluate than the left hand side. A reduction of the computational costs is only achieved if
the decomposition of the four-index integrals into three- and two-index intermediates, pro-
vided by this approximation, can be exploited to simplify contractions of the AO coulomb
integrals with other intermediates.

A common bottleneck of all second order correlation methods(for ground and excited
states) is the four-index transformation of the AO ERIs(αβ|γδ) to ERIs in a molecular
orbital basis (possibly modified as in Eq. (93) or (99)) with two occupied and two virtual
indices:

(ai|bj) =
∑

α

Cαa

∑

γ

Cγb

∑

β

Cβi

∑

δ

Cδj (αβ|γδ) . (112)

Efficient algorithms for this transformation require a number of floating point multipli-
cations that scales for the individual partial transformations with 1

2ON
4 + 1

2O
2N3 +

1
2O

2V N2 + 1
2O

2V 2N (ignoring possible sparsities in the integrals or coefficients) and,
as already pointed out above, disc space in the order of1

2O
2N2.

Using the resolution-of-the-identity approximation, thefour-index integrals in the MO
basis can be obtained as

(ai|bj) ≈
∑

P

BP,aiBP,bj (113)
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Table 1. Comparison of elapsed wall-clock timings for RI-MP2 vs. conventional integral-direct MP2 energy
calculations (# fcts. is the number of basis functions and #e− the number of correlated electrons,TMP2 timings
obtained with thempgrad code of the TURBOMOLE package61).

molecule basis # fcts. #e− TMP2 TRI−MP2

benzenea QZVPP 522 30 28 min 24 sec
benzenea aug-cc-pVTZ 756 30 3.8 h 1.2 min
Fe(CO)5a QZVPP 670 66 11.3 h 8.7 min

Fe(C5H5)2a QZVPP 970 66 843 h 45 min
C60

a,b cc-pVTZ 1800 240 112 h 171 min
Calix[4]areneb,c cc-pVTZ 1528 184 39.3 h 5.6 h

a RI-MP2 timings forricc2 code of the TURBOMOLE package61; b from Ref. 62;
c RI-MP2 timings forrimp2 code of the TURBOMOLE package61;

with

BP,ai =
∑

Q

[V −1/2]PQ

∑

α

Cαa

∑

β

Cβi(Q|αβ) (114)

which requires onlyON2Nx + OV NNx + OV N2
x + 1

2O
2V 2Nx floating point multi-

plications and memory or disc space in the orderONNx. With auxiliary basis sets opti-
mized56, 59, 60for the application in second order methodsNx is typically 2–4×Nx. As-
suming thatO ≪ V ≈ N (usually given in correlated calculations), one finds that the
number of floating point operations is by the RI approximation reduced by a factor of
≈ (N/O + 3)N/Nx. With doubly polarized or correlation-consistent triple-ζ basis sets
(e.g. TZVPP or cc-pVTZ) as often used with MP2 or CC2, the RI approximation typi-
cally reduces the CPU time for the calculation of the(ai|bj) integrals by more than an
order of magnitude. Some typical examples for MP2 calculations for the ground state cor-
relation energy are given in Table 1. These also demonstratehow the reduction in CPU
time obtained with the RI approximation increases with the size of the orbital basis set.
An important point for calculations on weakly bonded (i.e. hydrogen-bridged or van der
Waals) systems is that the efficiency of the integral prescreening, which is important for
the performance of conventional implementations using 4-index AO ERIs, diminishes if
diffuse functions are included in the basis set. For weakly bonded complexes such diffuse
functions are, however, needed for an accurate descriptionof the long range electrostatic,
exchange-correlation, and dispersion interactions. As seen at the calculations for benzene
with the QZVPP and the aug-cc-pVQZ basis, RI-MP2 calculations are much less sensitive
to such effects: while the CPU time for the conventional MP2 calculation increases from
QZVPP to aug-cc-pVQZ by more than a factor of 8, the CPU time needed for the RI-MP2
calculation increases only by a factor of 3.

However, for large scale applications at least as importantis that the scaling of the
storage requirements in the calculation of the integrals(ai|bj) with the system size
is reduced toO(ONNx). In combination with the doubles amplitude-direct formu-
lation outlined in the previous subsection, the RI approximation completely removes
the need to store any intermediates larger thanO(ONNx) on disc or in memory. For
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example the MP2 ground state energy can now be calculated using the following algorithm:

precomputeBQ,ai

do i = 1, nocc
do j = i, nocc

Iij
ab =

∑

QBQ,aiBQ,bj ∀ a, b (matrix-matrix multiply)

do a = 1, nvirt
do b = 1, nvirt

tijab = Iij
ab/(ǫi − ǫa + ǫj − ǫb)

EMP2 = EMP2 + (2− δij){2Iij
ab − I

ij
ba}t

ij
ab

end do
end do

end do
end do

The reductions are even larger for CC2 and other second ordermethods for excited
states and for theO(N 5)-scaling steps in the calculation of MP2 gradients. It turnsout
that all contractions which involve other four-index integrals in the MO basis than those of
(ia|jb)-type, needed in second order methods, can with the decomposition given by Eq.
(109) reformulated such that an explicit calculation of thefour-index MO integrals can be
avoided.

Together with the reduction in the CPU time the elemination of the storage bottleneck
opened the possibility to apply MP2 and CC2 to much larger systems as was feasible with
conventional implementations based on four-index AO ERIs.Since the steep increase of
the computational costs with the basis set size is reduced bythe RI approximation from
O(N4) toO(N2Nx) it is also easier than before to carry out such calculations with accu-
rate basis sets, as needed to exploit fully the accuracy of MP2, CC2 or the other second
order methods.

At this point it becomes neccessary to ask what are the errorsintroduced by the RI
approximation? As is obvious from the above discussion, theaccuracy (but also the ef-
ficiency) of the RI approximation depends on the choice of theauxiliary basis sets. For
a balanced treatment the auxiliary basis set should be optimized for the particular orbital
basis used in the calculation. Firstly, because the orbitalproducts that need to be well rep-
resented depend strongly on the orbital basis and, secondly, because the accuracy of the
approximation should increase with increasing accuracy ofthe orbital basis to make sure
that eventually a correct basis set limit will be obtained. To fully exploit the potential of the
approximation it is advantageous to further “tune” the auxiliary basis set for the integrals
most important in the employed electronic structure method. For second order methods
these are, as shown above,(ai|bj)-type integrals. The auxiliary basis functions are thus
used to expand products of occupied with virtual molecular orbitals:

φa(~r)φi(~r) ≈
∑

Q

Q(~r)cQ,ai . (115)

If we consider an atom, all products will be linear combinations of Gaussian type func-
tions centered at the atom with angular momenta up tolaux = lorb + locc, wherelorb is

100



0.1

1

10

100

1000

10000

100000

s p d f

cc-pVTZ orbital basis

0.1

1

10

100

1000

10000

100000

s p d f g

cc-pVTZ auxiliary basis

Figure 2. Exponents of the primitive GTOs in the cc-pVTZ orbital63 (on the left) and auxiliary59,60 (on the right)
basis sets for the neon atom.

the highest angular momentum included in the orbital basis set andlocc the highest angular
momentum of an occupied orbital. Also the range of exponentsthat should be covered
by the auxiliary basis can be deducted from similar considerations, but it should be taken
into account that the importance of the orbital productsφaφi for electron correlation varies
over orders of magnitudes. E.g., the contributions of core orbitals and similar those over
very high lying tight virtual orbitals (sometimes referredto as “anti core” orbitals) is small
because of large orbital energy denominators in the expression for the amplitudes. This
limits the importance of tight functions in the auxiliary basis, in particular if a frozen core
approximation is used and the core orbitals cannot at all contribute to the correlation treat-
ment. In the other direction, the most diffuse exponent needed in the auxiliary basis set
is bound by the exponent of any atomic orbital contributing significantly to an occupied
orbital, irrespectively how diffuse functions are included in the basis set. A typical compo-
sition of an orbital basis and a respective auxiliary basis set of correlated calculations with
a second order method is shown in Fig. 2 at the example of the cc-pVTZ basis sets for the
neon atom.

It turns out that the above arguments, although strictly only valid for atoms, apply in
practice usually also well to moleculesn. Therefore, the auxiliary basis sets can be opti-
mized once at the atoms for each orbital basis and then storedin a basis set library. On
the TURBOMOLE web page61 optimized auxiliary basis sets for correlated calculations
with second order methods are available for several orbitalbasis sets including SVP64,
TZVP65, TZVPP56, and QZVPP66 and most of the correlation-consistent basis sets63, 67–72

(cc-pVXZ, aug-cc-pVXZ, cc-pwCVXZ, etc.). These have been optimized56, 59, 60such
that the RI error, i.e. the additional error introduced by the RI approximation, is for the

nAn exception are the atoms with onlys orbitals occupied in the ground state configuration, in particular H and
Li, which in chemical bonds are often strongly polarized. For these atoms the auxiliary basis sets contain usually
functions up tolorb + 1 (instead of onlylorb) and are often optimized on small molecules.
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Figure 3. On the left: one-electron basis set errors in the MP2 valence correlation energy (in % of the estimated
limiting value) shown as normalized Gaussian distributions determined from̄∆ and∆std for a test set of 72
small and medium sized molecules with row 1 (B–Ne) and row 2 (Al–Ar) atoms59,60. On the right: error in the
MP2 valence correlation energies due to the resolution-of-the-identity approximation for ERIs for the same test
set59,60. Note that the scales on the abscissa differ by about three orders of magnitude!

ground state correlation energies (MP2 or CC2) about 2–3 orders of magnitudes smaller
than the one-electron (orbital) basis set error of the respective orbital basis set. The
correlation-consistent basis sets cc-pVXZ with X = D, T, Q, . . . and the series SVP,
TZVPP, QZVPP, . . . constitute hierarchies that converge to the (valence) basis set limit
and are thus a good example to demonstrate how orbital and auxiliary basis sets converge
in parallel. Fig. 3 shows the results of an error analysis forthe MP2 valence correlation
energies for 72 molecules containing first and second row atoms (H, He, B–Ne, Al–Ar).
The RI errors are somewhat larger for other properties than for ground state correlation
energies, for which they have been optimized. In particularin response calculations for
excited states the diffuse functions and also some other integral types become more im-
portant than they are for ground state calculations. But, still the RI error remains between
one and two orders of magnitudes smaller than the orbital basis set error as is shown in
Fig. 4 by an error analysis for RI-CC2 calculations on excited states with the aug-cc-pVTZ
basis sets. Since the RI approximation is a basis set expansion approach the RI error is a
smooth and usually extremely flat function of the coordinates. Therefore most of the error
cancels out in the calculation of energy differences, as e.g. reaction enthalpies, and the
errors in geometries are very small—typically a few10−3 pm and, thus, usually below the
convergence thresholds applied in geometry optimizations.

In summary, the major advantages of the resolution-of-the-identity approximation for
the electron repulsion integrals for correlated second order methods are
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Figure 4. Mean and maximum of the one-electron orbital and the RI errors in RI-CC2 calculations for excited
states with the aug-cc-pVTZ basis sets63,69,59. On the left: errors in excitation energies for 132 states. In the
middle: errors in the oscillator strengths for 32 states. Onthe right: errors in the dipole moments of 52 excited
states. For the test sets used and the technical details see Ref.73, from where the data has been taken.

• It allows efficient doubles amplitude-direct implementations and eliminates the need
to store anyO(N 4) arrays in memory or on disc.

• The CPU time for the correlation treatment is reduced by about an order of magnitude
and more.

• It is applicable in response calculations for excited states since it does not depend on
the locality of any intermediates.

Another important point related to the elimination of the huge storage demands forO(N 4)
scaling intermediates (i.e. two-electron integrals or amplitudes) is that the parallelizability
of these methods is improved since less data needs to be communicated between computer
nodes participating in a parallel calculation. We will comeback to this point in the next
section.

8 Parallel Implementation of RI-MP2 and RI-CC2 for Distribu ted
Memory Architectures

As discussed above, the time-determining steps in RI-MP2 and other second order methods
implemented with the RI approximation are the computation of the electron repulsion in-
tegrals in the MO basis(ia|jb) and/or the double excitation amplitudestijab and their con-
traction with integrals or other amplitudes to new intermediates, as for example

YQ,ai =
∑

bj

tijabBQ,bj . (116)
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Also for this step the computational costs increase asO(O2V 2Nx). As described in Refs.
55, 73–76,YQ,ai and all other intermediates calculated fromtijab can efficiently be calcu-
lated in a loop over two indices for occupied orbitals withO(N 2) memory demands. The
time-determining steps of RI-MP2 can thus efficiently parallelized over pairs of indices
for occupied orbitals since these are common to all steps scaling with O(O2V 2Nx) or
O(O2V 3). An alternative could be pairs of virtual orbitals, but thiswould result in short
loop lengths and diminished efficiency for medium sized molecules. A parallelization over
auxiliary basis functions would require the communicationof 4-index MO integrals be-
tween computer nodes, which would require high-performance networks. Such a solution
would restrict the applicability of the program to high-endsupercomputer architectures.
TURBOMOLE, however, has been designed for low-cost PC clusters with standard net-
works (e.g. Fast Ethernet or Gigabit). Therefore we choose for thericc2 code a paral-
lelization over pairs of occupied orbitals and accepted that this results in an implementation
which will not be suited for massively parallel systems, since a good load balance between
the participating CPUs will only be achieved forO ≫ nCPU (vide infra).

A key problem for the parallelization of RI-MP2 and RI-CC2 iswith this strategy the
distribution of pairs of occupied orbitals(ij) over distributed memory nodes such that

a) the symmetry of(ia|jb) with respect to permutation ofia↔ jb can still be exploited

b) the demands on the individual computer nodes for accessing and/or storing the three-
index intermediatesBQ,ai andYQ,ai are as low as possible.

To achieve this, we partition the occupied orbitals intonCPU batchesIm of (as much
as possible) equal size, wherenCPU is the number of computer nodes. The pairs of
batches(Im, Im′) with m ≤ m′ can be ordered either on the upper triangle of a sym-
metric matrix or on block diagonal stripes as shown in Fig. 5.Now, each computer node
gets assigned in a suitable way one block from of each diagonal, such that each node needs
only access a minimal number of batchesIm of BQ,ai andYQ,ai. The minimal number
of batches a node needs to access—in the following denoted asnblk—increases approxi-
mately with

√
nCPU . The calculation of these three-index ERIsBQ,ai would require about

O(N2NX) + O(ON2NX) × nblk/nCPU floating point multiplications. Similar compu-
tational costs arise for some steps that involveYQ,ai and other intermediates that follow
theO(O2N2Nx)-scaling construction of this intermediate. Thus, a conflict between min-
imization of the operation count and communication arises:

• If the three-index intermediatesBQ,ai andYQ,ai are communicated between the nodes
to avoid multiple integral evaluations, the communicationdemands per node become
relatively large,∼ NNx ×O/

√
nCPU .

• If the communication of three-index intermediates is avoided by evaluating on each
node all integrals needed, the operation count for the stepswhich are in RI-MP2 and
RI-CC2 the next expensive ones after theO(O2V 2NX) steps decreases only with
1/
√
nCPU .

The first option requires a high bandwidth for communicationwhile the second option can
also realized with a low bandwidth, but on the expense of a less efficient parallelization.
For both ways a prerequisite for a satisfactory efficiency isthat the total computational
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Figure 5. Arrangement of the pairs of batchesm ≤ m′ with active occupied orbitals on the upper triangle of a
symmetric matrix or on block diagonal stripes.

costs are dominated by those for theO(N 5) steps such that the time needed for multiple
calculations (O(N 4)) or communication (O(N 3)) of three-index intermediates is a negli-
gible fraction of the total time for the calculation. Both options have been realized in our
parallel implementation of thericc2 code and shall in the following be denoted as modes
for “slow communication” and “fast communication”.

To implement the blocked distribution of occupied orbital indices and index pairs
sketched above we define at the beginning of the calculation the following index sets:

• Im: a block of occupied orbitalsi assigned to nodem

• Jm: merged set of thenblk blocksIn for which nodem needs the three-index ERIs
BQ,ai or calculates a contribution toYQ,ai

• Sm: the set of all columns in the blocked distribution to which nodem calculates
contributions.

• Rm(n): the indices of the rows in columnn assigned in this distribution to nodem

With this concept one obtains an efficient parallelization of most program parts that involve
at least one occupied index. These parts use only three- and two-index AO integrals and
include all steps that scale withO(N 4) or O(N 5) in RI-MP2 single point calculations
for energies or RI-CC2 calculations for excitation energies and spectra. For a discussion
of additional demanding steps in the computation of analytic derivatives (gradients) the
interested reader is referred to Refs. 55,75–77. Here, we only sketch how the computation
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of the intermediateYQ,ai can be implemented without any MPI communication once each
computer node has calculated or received all integral intermediatesBQ,ai needed there:

loopn ∈ Sm, loopI (whereI ⊆ In)

readBQ,ai for all i ∈ I
loopn′ ∈ Rm(n), loopj ∈ In′ with j ≤ i
∗ readBQ,bj

∗ tijab ← BQ,aiBQ,bj/
{

ǫi − ǫa + ǫj − ǫb
}

∗ YP,ai ← (2tijab− t
ij
ba) BP,bj and forj 6= i alsoYP,bj ← (2tijab− t

ij
ba) BP,ai

end loopj, loopn′

storeYP,ai andYP,bj on disk (distributed)

end loopI, loopn

If only the RI-MP2 energy is needed, it can be evaluated directly after the calculation of the
integrals(ia|jb) and amplitudestijab as described in Sec. 6.1 and the calculation ofYQ,ai

can be skipped. If the latter intermediates are needed, the contributions to theYQ,ai inter-
mediate can be added and redistributed (after the loop overn has been closed) such that
each node has the complete results forYP,ai for all i ∈ Jm (requiring the communication
of ≈ 2OV Nx/

√
nCPU floating point numbers per node).

8.1 Performance for parallel RI-MP2 energy calculations

To benchmark the calculation of MP2 energies we used four typical test systems with
structures as shown in Fig. 6:

• A calicheamicine model taken from Ref. 78, which has also no point group symmetry.
These calculations have been done in the cc-pVTZ basis sets63, 67, 68with 934 orbital
and 2429 auxiliary functions and 124 electrons have been correlated.

• The fullerene C60, which has Ih symmetry, but the calculations reported here ex-
ploited only the Abelian subgroupD2h. The cc-pVTZ basis set has been used, which
in this case comprises 1800 orbital and 4860 auxiliary basisfunctions and the 240
valence electrons were correlated.

• A chlorophyll derivative which has also no point group symmetry. The cc-pVDZ
basis with in total 918 orbital and 3436 auxiliary functionshave been used and 264
electrons have been correlated.

• A cluster of 40 water molecules as an example for a system where integral pre-
screening leads to large reductions in the costs in conventional MP2 calculations.
The basis sets are 6-31G∗ for the orbital79 and cc-pVDZ for the auxiliary59 basis
with, respectively, 760 and 3840 functions; the point groupis C1 and the 320 valence
electrons have been correlated.
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Figure 6. Structures of the four test examples used to benchmark the performance of parallel RI-MP2 calcula-
tions. For the details of the basis sets and the number of correlated electrons see text.

The maximum amount of core memory used by the program was in all calculations limited
to 750 Mb. The calculations were run on two different Linux cluster: one cluster with
ca. 100 Xeon Dual 2.8 GHz nodes connected through a cascaded Gigabit network and a
second cluster with ca. 64 Athlon 1800MP MHz nodes connectedthrough a 100 MBit fast
Ethernet network. Due to a much larger load on the first cluster and its network the transfer
rates reached in the benchmark calculations varied betweenca. 80–200 MBit/sec per node.
On the Athlon Cluster with the 100 MBit network we reached transfer rates of ca. 20–50
MBit/sec per node.

Fig. 7 shows timings for the calculation of MP2 energies for the C60 fullerene. On
both architectures in sequential runs about 55% of the time are spend in the matrix mul-
tiplication for theN 5 step. With increasing number of nodes this ratio slowly decreases.
In case of the “slow communication” mode because the costs for the integral evaluation
take an increasing fraction of the total wall time; in the “fast communication” mode (and
here in particular on the cluster with the slower network) because of the increasing fraction
of time spent in the communication of the 3-index MO integralintermediateBQ,ai. Not
parallelized steps—as e.g. the evaluation of the matrixVPQ of 2-index ERIs, its Cholesky
decomposition and formation of the inverse— take only a marginal fraction of the total
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Figure 7. Timings for the most important steps in parallel RI-MP2 energy calculations for C60 in the cc-pVTZ
basis (240 electrons correlated). For technical details ofthe machines used see text. At the abscissa we indicated
the number of CPUs used for the calculations. For the clusterwith a 100 MBit Network letters ”a” and ”b” are
added, respectively, for calculations in the “fast” and “slow” communication modes. On the other cluster only
the former program mode has been tested. The fraction denoted “overhead” includes most non-parallel steps, as
the calculation of the Coulomb metricV and the inverse of its Cholesky decomposition, I/O and communication
of MO coefficients, etc. With “AO 3-idx.-integ” we denoted the time spend for the calculation of the AO 3-index
integrals(P |µν) and with “transformation” and “I/O & comm. for B” the fractions spend in the three-index
transformations for the intermediatesBi

Qa and for saving these intermediates on disk and/or distributing them to

other computer nodes. “N̂5 step” and “I/O for N̂5 step” are the fractions spend, respectively, in theN 5-scaling
matrix multiplication and the I/O ofB intermediates during the calculation of two-electron MO integrals. For
parallel calculations idle times caused by non-perfect load-balance are included under the point “I/O for N5̂
step”.

wall time and the fraction of the time spend in the I/O stays approximately constant with
the number of nodes used for the calculation. Another important message from Fig. 7 is,
that even with a relatively slow network it is advantageous to communicate the 3-index in-
termediates, although on the cluster with the slower network the difference in performance
between the two modes is not large. We note, however, that this depends also on the size
of the system and the basis sets.

Because of the symmetry of the molecule, an RI-MP2 energy calculation for C60 is
today not really a large scale application. The same holds for the other three test exam-
ples. Nevertheless, already for these (for parallel calculations) small examples the speed
ups obtained with the present implementation are reasonable as Fig. 8 shows. The speed
up obtained increases with the system size as the computational costs become dominated
by theN 5-scaling matrix multiplication in the construction of the MO 4-index ERIs and
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Figure 8. Speed up obtained for parallel RI-MP2 energy calculations on the Linux cluster with Gigabit network
with four test examples. The number of nodes is given on the abscissa and the speed up (defined as wall time of
parallel calculation dived by the wall time of the sequential run) is indicated on the ordinate.

the less good parallelizing calculation and/or communication of the 3-index MO integrals
becomes unimportant for the total wall time.

9 RI-MP2 Calculations for the Fullerenes C60 and C240

An important aspect of the parallel implementation of RI-MP2 is that it allows to com-
bine the fast RI-MP2 approach withparallel Hartree-Fock self-consistent field (HF-SCF)
calculations, available today in many program packages forelectronic structure calcula-
tions, to optimize geometries for relatively large molecules at the MP2 level. An example
for such a calculation is the determination of the MP2 basis set limit for the ground state
equilibrium structure of C60. The structure of C60 has been studied before at the MP2
level by Häser and Almlöf81 in 1991, but due to the large computational costs of MP2 the
calculations had to be limited to a singly polarized TZP basis set ([5s3p1d], 1140 basis
functions), which is known to cover only about 75% of the correlation energy. With the
parallel implementation of RI-MP2 it was now possible repeat this calculation using cc-
pVTZ basis ([4s3p2d1f], 1800 basis functions), which givestypically correlation energies
almost within 90% of the basis set limit, and the cc-pVQZ basis ([5s4p3d2f1g], 3300 basis
functions), which usually cuts the remaining basis set errors again into half. The results for
the bond lengths and the total energies are summarized in Table 2 together with the results
from Ref. 81 and the available experimental data. As anticipated from the quality of the
basis sets, the result for the correlation energy increasesby about 15% from the MP2/TZP
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Table 2. Equilibrium bond distances of C60 ; dC−C denotes the distance between adjacent C atoms in a five-ring
anddC=C the distance between to the C-C bond shared between to six-rings. The bond distances are given in
Ångstrøm (̊A) and the total energies in Hartrees (H).

Method dC−C/Å dC=C/Å Energy/hartree

SCF/DZPa 1.450 1.375 -2272.10290

SCF/TZPa 1.448 1.370 -2272.33262

MP2/DZPb 1.451 1.412 -2279.73496

MP2/TZPb 1.446 1.406 -2280.41073

MP2/cc-pVTZc 1.443 1.404 -2281.65632

MP2/cc-pVQZc 1.441 1.402 −2282.34442

exp.d 1.458(6) 1.401(10)

exp.e 1.45 1.40

exp.f 1.432(9) 1.388(5)

a from Ref. 80;b from Ref. 81;c from Ref. 76, at the MP2/cc-pVTZ optimized structure
the SCF energy is -2272.40406 hartree;d gas phase electron diffraction, Ref. 82;e solid
state NMR, Ref. 83;f X-ray of C60(OsO4)(4-tert-butylpyridine)2, Ref. 84;

to the MP2/cc-pVTZ calculation and again by about 6% from thecc-pVTZ to the cc-pVQZ
basis. Also the changes in the bond lengths from the MP2/TZP to the MP2/cc-pVQZ level
are with 0.004–0.005̊A of the same magnitudes as between the MP2/DZP and MP2/TZP
calculations. But the difference between the two C–C distances remains almost unchanged,
and also the comparison with the experimental data is not effected, since the error bars of
the latter are with about±1 pm of the same order of magnitude as the basis set effects.
The inclusion of core correlation effects would lead to a further slight contraction of the
bond lengths, but the largest uncertainty comes from higher-order correlation effects which
would probably increase the bond lengths in this system, butlikely not more than 0.005̊A.
Therefore, it is estimated that the MP2/cc-pVQZ results forthe equilibrium bond distances
(re) of the buckminster fullerene C60 are accurate within± 0.005Å. This is slightly less
than the uncertainty of the presently available experimental data. Within their uncertainties
the ab initio calculations and the experiments are thus in good agreement.

Another example demonstrating which system sizes can be handled with the parallel
implementation of RI-MP2 is the next larger icosahedral homologue of the Buckminster
fullerene C60: the C240 molecule.The correlation consistent triple-ζ basis cc-pVTZ com-
prises for this molecules 7200 basis functions and, if the 1s core orbitals are kept frozen,
960 electrons have to be correlated. This calculation has been run on a Linux cluster with
Dual Xeon 2.8 GHz nodes connected by a Gigabit network. Because the memory demands
of implementation increase for non-Abelian point groups with the square of the dimension
of the irreducible representations the calculation was carried out in the D2h subgroup of
the molecular point group Ih. On 19 CPUs the RI-MP2 calculation was completed after 16
hours and 6 minutes. About 12.5% of the time was spend in the evaluation and distribution
of the two- and three-index integrals and 85% in theO(O2V 2Nx) scaling construction of

110



Figure 9. Structure of the icosahedral fullerene C240 .

the four-index integrals in the MO basis(ia|jb). In D2h symmetry about6 × 1011 four-
index MO integrals (≈ 4.8 TByte) had to be evaluated to calculate the MP2 energy. This
shows that such a calculation would with a conventional (non-RI) MP2 require either an
enormous amount of disc space or many costly re-evaluationsof the four-index AO two-
electron integrals and would thus even on a massively parallel architecture difficult to carry
out. To the best of our knowledge this is the largest canonical MP2 calculation done until
today. With the parallel implementation of the RI-MP2 approach calculations of this size
can now be carried out on PC clusters build with standard (andthus low cost) hardware
and are expected to become soon routine applications.

The total energy of C240 obtained with MP2/cc-pVTZ at the BP8685–87/SVP64, 58 op-
timized structure88 is −9128.832558 H. For the buckminster fullerene C60 a single point
MP2/cc-pVTZ calculation at the BP86/SVP optimized geometry gives a total energy of
−2281.645107 H. Neglecting differential zero-point energyeffects, which in this case are
expected to be small, we obtain from our calculations an estimate for the reaction enthalpy
of 4 × C60 → C240 of −2.25 H, i.e. a change in the enthalpy of formation per carbon
atom of−9.4 mH or−25 kJ/mol. This can be compared with the experimental result89 for
∆fH

0 of C60 relative to graphite of 39.25±0.25 kJ/mol. Thus, the present calculations
predict that the strain energy per carbon atom in C240 is with≈ 15 kJ/mol only about 35%
of the respective value in C60.
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87 8'5'56 N R1 234CN
Figure 10. Enumeration of the atoms in NMC6 (R = methyl) and NTC6 (R =tertbutyl). For DMABN R = methyl
and aliphatic six-ring is replaced by a (second) methyl group at the N-atom.

10 Geometry Optimizations for Excited States with RI-CC2: The
Intramolecular Charge Transfer States in Aminobenzonitrile
Derivatives

An example for the optimization of excited state equilibrium structures with RI-CC2 are re-
cent investigations90, 91on N-alkyl-substituted aminobenzonitriles (see Fig. 10).A problem
discussed for this class of molecules in the literature since several decades in many pub-
lications has been the structure of a so-called intramolecular charge-transfer (ICT) state
which is observed in fluorescence and femtosecond spectroscopic experiments close to a
so-called locally excited (LE) state.92–96 The two states belong to the two lowest singlet
hypersurfaces S1 and S2, which are connected through a conical intersection seam. Exper-
imental and theoretical results97–101 indicate that the reaction coordinate which connects
the minima on the two surfaces through the conical intersection involves a Kekulé-like
distortion of the phenyl ring and a twist of the amino group, which for the N,N-dimethyl-
aminobenzonitrile (DMABN) is known to be in the ground statealmost coplanar with the
phenyl ring. That the twisting coordinate is involved probably explains distinct effects
of different aliphatic substituents at the amino group on the fluorescence properties (vide
infra) which are intensively discussed in the literature. In 1-tert-butyl-6-cyano-1,2,3,4-
tetrahydroquinoline (NTC6) and 1-metyl-6-cyano-1,2,3,4-tetrahydroquinoline (NMC6) a
twist of the amino group is restricted by the aliphatic ring to a certain range of torsion
angles, but on the other side the sterically demanding bulkytert-butyl substituent in NTC6
disfavors a coplanar orientation. CC2/TZVPP calculations91 predict for the ground state of
NMC6 an almost coplanar orientation of the phenyl and amino moieties, but for NTC6 a
tilted geometry with a twist angle of about 28◦ (cmp. Table 3).

Table 4 gives an overview on the CC2/TZVPP results for some spectroscopic prop-
erties of DMABN, NMC6 and NTC6, e.g. the absorption and emission energies and the
dipole moments in comparison with the available experimental data. For the ICT states we
found for NMC6 and NTC6 three conformations. Table 5 summarizes the results for the
energetically lowest-lying structures and the ones with the highest dipole moments denoted
as, respectively, ICT-1 and ICT-2, in comparison with the structure of the single conformer
in the ICT state of DMABN. In all three molecules the ICT equilibrium geometries display
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Table 3. Calculated bond lengths (pm) and angles (◦) of the ground states of DMABN, NMC6, and NTC6 in
comparison (from Ref. 91, for the enumeration of the atoms see Fig. 10).

DMABN NMC6 NTC6

d(CPh-N1)a 137.7 138.1 139.0

d(C8C8′ ) 141.4 141.2 141.2
d(C8′C5′ ) 141.4 141.9 141.1
d(C7C8) 138.7 138.7 138.9
d(C5C5′ ) 138.7 138.9 138.6
d(C6C7) 140.2 140.0 139.9
d(C5C6) 140.2 140.2 140.3

d(C6CCN) 142.7 142.6 142.6
d(CN) 118.2 118.1 118.1
τb 0 0.1 27.9
φ1

c 23 24.8 18.9
φ2

d < 1 1 1.5
a bond distance between phenyl ring and amino group.b torsion angle, defined as dihe-
dral angle of the normals defined by the planes C8-C8′ -C5′ and C2-N1-CR and the bond
C8′ -N1. c out-of-plane angle of the bond C8′ -N1 with respect to the plane C2-N1-CR

(“wagging” angle). d out-of-plane angle of the bond C8′ -N1 with respect to the plane
C8-C8′ -C5.

marked quinoid distortions of the aromatic ring system. An important finding, which was
not anticipated from the experimental data that has been available in the literature, is that
the aromatic ring is no longer confined to planarity in the excited state. Rather, the carbon
atom labeled 8’ in Fig. 10 is pyramidalized. Therefore the aliphatic six-ring can accommo-
date twist angles of the amino group of up to 60–70◦, as illustrated in Fig. 11, and in this
way energetically low-lying twisted ICT states can be realized even in NTC6 and NMC6.
In the literature it was before assumed that the aliphatic six-ring, which connects the amino
group with the phenyl ring restricts these molecules to “planarized” structures and makes
such a twist impossible.

The transition to the ICT state is at the ground state geometry dominated by the one-
electron HOMO→LUMO excitation in these molecules. Both orbitals are of Ph-N anti-
binding character, but the orbital energy of the LUMO decreases slightly faster with in-
creasing twisting angle than the energy of the HOMO and already such a simple model
predicts for the ICT state close to the ground state geometrya gradient directed to a twisted
structure. With increasing twisting angle the transition assumes an increasing contribution
from the HOMO-2→LUMO excitation. The HOMO-2 is the Ph-N binding counterpartof
the HOMO and increases in energy with the twisting angle and mixes with the HOMO.
As the angle approaches 90◦ one of the two orbitals becomes the lone-pair at the amino
N-atom while the other is localized in the aromatic system and the transition to the ICT
state is dominated by then → π⋆ excitation. In a many electron picture this change in
the character of the excitation corresponds to an avoided crossing of S2 with another, at
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Table 4. Calculated absorption and emission energies and dipole moments for DMABN, NMC6 and NTC6 in
comparison with experimental data. The CC2 results for absorption and emission energies are vertical electronic
transition energies; the dipole moments were calculated asanalytic derivatives of the CC2 total energies.

DMABN NMC6 NTC6

CC2a exp. CC2a exp. CC2a exp.

absorption (S1) [eV] 4.41b 4.25c 4.31d 4.33d

absorption (S2) [eV] 4.77b 4.56c 4.58d 4.32e 4.43d 4.14e

osc. strengths (S1) 0.03bf 0.03f 0.03f

osc. strengths (S2) 0.62bf 0.49f 0.51f

Te (LE) [eV] 4.14 4.07 3.91
emission (LE) [eV] 3.78g 3.76h 3.67g 3.67e 3.34g 3.50e

Te (ICT) [eV] 4.06–4.16i 4.18 3.71
emission (ICT) [eV] 2.49–3.27ig 2.8–3.2j 2.53gk 2.51gk 2.8l–3.3e

dipole (GS) [D] 7.4 6.6j 7.5 6.8m 7.7 6.8m

dipole (LE) [D] 10.1 9.7j 10.4 10.6m 12.6
dipole (ICT) [D] 13.3–15.1i 17±1j 12.7k 13.5k 17–19m

a Unless otherwise indicated the CC2 results for DMABN are taken from Ref. 90 and
those for NMC6 and NTC6 from Ref. 91.b CC2/TZVPP (Ref.102). c EELS band max-
imum (Ref. 103).d Vertical excitation energy to the La (or S2) state which has a sig-
nificantly larger oscillator strength.e Experimental band maximum inn-hexane (Ref.
94). f Oscillator strength for vertical electronic transition calculated at the CC2/TZVPP
level in length gauge.g Vertical energy separation from ground state at the excitedstate
equilibrium structure.h Maximum of dispersed emission from jet-cooled DMABN
(Ref. 104).i The first value is the result for the gas phase equilibrium structure and the
second value is obtained at the C2v symmetric saddle point (Ref. 90).j Emission en-
ergy from ICT state from maxima of fluorescence bands; groundstate dipole moment
derived from the dielectric constant and refractive index in dioxane and the excited state
dipole moments from time-resolved microwave conductivitymeasurements in dioxane
(Ref. 105).k Value refers to the ICT-2 conformer.l Experimental band maximum in
methanol (Ref. 94).m Derived from solvatochromic shift of fluorescence maximum
(Ref. 94).

the ground state structure energetically higher lying, charge-transfer state—in DMABN
according to DFT/SCI calculation in Ref. 106 the S5 state. The avoided crossing with
this state is the main driving force for the formation of the TICT structures (twisting and
pyramidilization at the C8′ atom) in DMABN, NTC6, NMC6 and other alkyl-substituted
amino-benzonitrils. It leads to a pronounced stabilization of the ICT state at large twisting
angles and enhances the charge-transfer character, as it isapparent from the expectation
values for the dipole moment (see Table 4). For all three molecules, DMABN, NMC6, and
NTC6, one finds a similar change in the electronic character from the vertical excitation in
the Franck-Condon region to the equilibrium geometries of the ICT states. This is in line
with the interpretation of recent measurements of the short-time dynamics in DMABN
derivatives after excitation to S2.97, 107–110
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Figure 11. Equilibrium structures of the ICT states in DMABN, NMC6, and NTC6.

For NTC6 the increase in the twist angle from the ground to theexcited ICT states
reduces the steric strain of thetert-butyl group und thus compensates for the hindrance of
the twist by the aliphatic bridge. We obtain at the CC2/TZVPPlevel that for NTC6 and
DMABN the ICT states are energetically slightly below the LEstate, which is reached
by an one-electron transition from the PH-N antibinding HOMO to a Ph-N non-binding
orbital. For NMC6, however, the inhibition of a 90◦ twist is not compensated by the
release of a similar strain since the methyl substituent is sterically much less demanding.
Thus, in difference to DMABN and NTC6 the LE→ICT reaction for NMC6 is predicted
by the RI-CC2 calculations to be slightly endotherm. This explains why NMC6 is not dual
fluorescent, in contrast to DMABN and NTC6.

11 Summary

The computational costs of wavefunction based correlated ab initio methods that treat the
electron–electron interaction correctly through second order (so-called second order or
approximate doubles methods) have in conventional implementations been dominated by
the huge operation counts for the calculation of the four-index electron repulsion integrals
in the AO basis and their transformation to the MO basis. The costs for these steps increase
rapidly with the size of the system studied and the basis setsused. In addition, also the huge
storage demands for the four-index transformation hindered applications on large systems.

With the resolution-of-the-identity approximation for the electron repulsion integrals
the CPU time for the calculation of the MO integrals needed insecond order methods is
reduced by about an order of magnitude (and sometimes even much more) and the scaling
of the storage demands is reduced fromO(O2N2) to O(OV Nx). If optimized auxiliary
basis sets are used, as they today are available for many orbital basis sets, the errors due to
RI approximation are insignificant compared to the errors due to the incompleteness of the
orbital basis sets.

In combination with a new parallel implementation in TURBOMOLE for distributed
memory architectures (e.g. PC clusters) it became now possible to carry out RI-MP2 cal-
culations for energies and structures with several thousands of basis functions and several
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Table 5. Calculated bond lengths (pm) and angles (◦) and weights of the two most important one-electron excita-
tions (%) for the intramolecular charge-transfer states ofDMABN, NMC6, and NTC6 in comparison (from Ref.
91, for the enumeration of the atoms see Fig. 10).

DMABN NMC6 NTC6

ICT ICT-1 ICT-2 ICT-1 ICT-2

d(CPh-N1)a 144.3 146.8 145.0 146.8 145.7
d(C8C8′ ) 144.6 143.5 144.8 142.9 144.9
d(C8′C5′ ) 144.6 146.2 144.5 146.0 143.6
d(C7C8) 137.2 137.2 137.7 137.3 137.8
d(C5C5′ ) 137.2 138.0 136.9 137.9 137.1
d(C6C7) 142.9 143.4 142.4 143.8 142.4
d(C5C6) 142.9 141.8 143.7 141.9 144.0

d(C6CCN) 140.9 141.2 140.9 141.1 140.8
d(CN) 118.9 118.8 118.9 118.8 118.9
τb 90 54.3 66.6 58.5 65.0
φ1

b 0 24.1 14.7 20.7 5.2
φ2

b 41 43.9 44.6 36.4 43.4
HOMO→LUMO 65 62 69 64

HOMO-2→LUMO 15 17 25 16
a bond distance between phenyl ring and amino group.b for the definition of the torsion
and the out-of-plane angles see Table 3.

hundreds of correlated electrons. This extends the applicability of MP2 to systems which
else can only be treated with SCF or DFT methods. Calculations on excited states using
e.g. the approximate coupled-cluster singles and doubles method CC2 or the perturbative
doubles correction to configuration interaction singles, CIS(D), are somewhat more in-
volved and structure optimizations for excited states are (because of weakly avoided cross-
ings or conical intersections) much less straightforward than for ground states. With the
parallel implementation of RI-CC2 they become still feasible for molecules with more than
30 atoms and many hundred basis functions even if the molecular structure has no point
group symmetry.
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3. G. Hetzer, M. Schütz, H. Stoll, and H. J. Werner.J. Chem. Phys., 113:9443–9455,

2000.
4. G. E. Scuseria and P. Y. Ayala.J. Chem. Phys., 111:8330–8343, 1999.
5. P. E. Maslen and M. Head-Gordon.J. Chem. Phys., 109:7093–7099, 1998.
6. S. H. Li, J. Ma, and Y. S. Jiang.J. Comp. Chem., 23:237–244, 2002.
7. K. Morokuma.Philosophical Transactions of the Royal Society of London Series A –

Mathematical Physical and Engineering Sciences, 360:1149–1164, 2002.
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18. T. Korona, K. Pflüger, and H. J. Werner.Phys. Chem. Chem. Phys., 6:2059–2065,

2004.
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