267 research outputs found

    A Search for Nitrogen-Enhanced Metal-Poor Stars

    Get PDF
    Theoretical models of very metal-poor intermediate-mass Asymptotic Giant Branch (AGB) stars predict a large overabundance of primary nitrogen. The very metal-poor, carbon-enhanced, s-process-rich stars, which are thought to be the polluted companions of now-extinct AGB stars, provide direct tests of the predictions of these models. Recent studies of the carbon and nitrogen abundances in metal-poor stars have focused on the most carbon-rich stars, leading to a potential selection bias against stars that have been polluted by AGB stars that produced large amounts of nitrogen, and hence have small [C/N] ratios. We call these stars Nitrogen-Enhanced Metal-Poor (NEMP) stars, and define them as having [N/Fe] > +0.5 and [C/N] < -0.5. In this paper, we report on the [C/N] abundances of a sample of 21 carbon-enhanced stars, all but three of which have [C/Fe] < +2.0. If NEMP stars were made as easily as Carbon-Enhanced Metal-Poor (CEMP) stars, then we expected to find between two and seven NEMP stars. Instead, we found no NEMP stars in our sample. Therefore, this observational bias is not an important contributor to the apparent dearth of N-rich stars. Our [C/N] values are in the same range as values reported previously in the literature (-0.5 to +2.0), and all stars are in disagreement with the predicted [C/N] ratios for both low-mass and high-mass AGB stars. We suggest that the decrease in [C/N] from the low-mass AGB models is due to enhanced extra-mixing, while the lack of NEMP stars may be caused by unfavorable mass ratios in binaries or the difficulty of mass transfer in binary systems with large mass ratios.Comment: 14 pages, 7 figures, to be published in Ap

    Close binary EHB stars from SPY

    Get PDF
    We present the results of a radial velocity (RV) survey of 46 subdwarf B (sdB) and 23 helium-rich subdwarf O (He-sdO) stars. We detected 18 (39%) new sdB binary systems, but only one (4%) He-sdO binary. Orbital parameters of nine sdB and sdO binaries, derived from follow-up spectroscopy, are presented. Our results are compared with evolutionary scenarios and previous observational investigations.Comment: To appear in "Extreme Horizontal Branch Stars and Related Objects", Astrophysics and Space Science, Kluver Academic Publishers, edited by P.F.L. Maxte

    Galactic Archeology with 4MOST

    Full text link
    4MOST is a new wide-field, high-multiplex spectroscopic survey facility for the VISTA telescope of ESO. Starting in 2022, 4MOST will deploy more than 2400 fibres in a 4.1 square degree field-of-view using a positioner based on the tilting spine principle. In this ontribution we give an outline of the major science goals we wish to achieve with 4MOST in the area of Galactic Archeology. The 4MOST Galactic Archeology surveys have been designed to address long-standing and far-reaching problems in Galactic science. They are focused on our major themes: 1) Near-field cosmology tests, 2) Chemo-dynamical characterisation of the major Milky Way stellar components, 3) The Galactic Halo and beyond, and 4) Discovery and characterisation of extremely metal-poor stars. In addition to a top-level description of the Galactic surveys we provide information about how the community will be able to join 4MOST via a call for Public Spectroscopic Surveys that ESO will launch.Comment: To be published in "Rediscovering our Galaxy", IAU Symposium 334, Eds. C. Chiappini, I. Minchev, E. Starkenburg, M. Valentin

    Mass loss of rotating stars at very low metallicity

    Get PDF
    Some indirect observations, as the high fraction of Be stars at low metallicity, or the necessity for massive stars to be important sources of primary nitrogen, seem to indicate that very metal poor stars were fast rotators. As a consequence of this fast rotation, these stars, contrarily to current wisdom, might lose large amounts of mass during their lifetime. In this paper, we review various mechanisms triggered by rotation which may induce strong mass loss at very low metallicity. The most efficient process comes from surface enrichments in CNO elements which then drive mass loss by stellar winds. Due to this process, a fast rotating 60 M⊙_\odot with metallicities in the range of Z=10−8Z=10^{-8} and 10−510^{-5}, can lose between 30 and 55% of its initial mass. This rotationally wind ejected material participates to the chemical evolution of the interstellar medium, enriching it exclusively in H- and He-burning products. In particular, metal poor fast rotating stars may play a key role for explaining the origin of the peculiar abundance pattern observed at the surface of the extremely metal-poor C-rich stars, for explaining the chemical inhomogeneities observed in globular clusters, and the presence of stars in ω\omega Cen with a very high helium content .Comment: 15 pages, 3 figures, contribution to Nuclei in the Cosmos IX, Proceedings of Science, accepte

    Observational evidence for a different IMF in the early Galaxy

    Full text link
    The unexpected high incidence of carbon-enhanced, s-process enriched unevolved stars amongst extremely metal-poor stars in the halo provides a significant constraint on the Initial Mass Function (IMF) in the early Galaxy. We argue that these objects are evidence for the past existence of a large population of intermediate-mass stars, and conclude that the IMF in the early Galaxy was different from the present, and shifted toward higher masses.Comment: 14 pages, 1 color figure, accepted for publication on Ap

    CH in stellar atmospheres: an extensive linelist

    Get PDF
    The advent of high-resolution spectrographs and detailed stellar atmosphere modelling has strengthened the need for accurate molecular data. Carbon-enhanced metal-poor (CEMP) stars spectra are interesting objects with which to study transitions from the CH molecule. We combine programs for spectral analysis of molecules and stellar-radiative transfer codes to build an extensive CH linelist, including predissociation broadening as well as newly identified levels. We show examples of strong predissociation CH lines in CEMP stars, and we stress the important role played by the CH features in the Bond-Neff feature depressing the spectra of barium stars by as much as 0.2 magnitudes in the λ=\lambda=3000 -- 5500 \AA\ range. Because of the extreme thermodynamic conditions prevailing in stellar atmospheres (compared to the laboratory), molecular transitions with high energy levels can be observed. Stellar spectra can thus be used to constrain and improve molecular data.Comment: 33pages, 15 figures, accepted in A&A external data available at http://www.astro.ulb.ac.be/~spectrotools

    Binaries discovered by the SPY project. IV, Five single-lined DA double white dwarfs

    Get PDF
    We present results from our ongoing follow-up observations of double white dwarf binaries detected in the ESO SN Ia Progenitor SurveY (SPY). We discuss our observing strategy and data analysis and present the orbital solutions of five close double white dwarf binaries: HE0320−1917, HE1511−0448, WD0326−273, WD1013−010 and WD1210+140. Their periods range from 0.44 to 3.22 days. In none of these systems we find any spectral lines originating from the companion. This rules out main sequence companions and indicates that the companion white dwarfs are significantly older and cooler than the bright component. Infrared photometry suggests the presence of a cool, helium-rich white dwarf companion in the binary WD 0326−273. We briefly discuss the consequences of our findings for our understanding of the formation and evolution of double white dwarfs

    Near-Infrared Spectroscopy of Carbon-Enhanced Metal-Poor Stars. I. A SOAR/OSIRIS Pilot Study

    Full text link
    We report on an abundance analysis for a pilot study of seven Carbon-Enhanced Metal-Poor (CEMP) stars, based on medium-resolution optical and near-infrared spectroscopy. The optical spectra are used to estimate [Fe/H], [C/Fe], [N/Fe], and [Ba/Fe] for our program stars. The near-infrared spectra, obtained during a limited early science run with the new SOAR 4.1m telescope and the Ohio State Infrared Imager and Spectrograph (OSIRIS), are used to obtain estimates of [O/Fe] and 12C/13C. The chemical abundances of CEMP stars are of importance for understanding the origin of CNO in the early Galaxy, as well as for placing constraints on the operation of the astrophysical s-process in very low-metallicity Asymptotic Giant Branch (AGB) stars. This pilot study includes a few stars with previously measured [Fe/H], [C/Fe], [N/Fe],[O/Fe], 12C/13C, and [Ba/Fe], based on high-resolution optical spectra obtained with large-aperture telescopes. Our analysis demonstrates that we are able to achieve reasonably accurate determinations of these quantities for CEMP stars from moderate-resolution optical and near-infrared spectra. This opens the pathway for the study of significantly larger samples of CEMP stars in the near future. Furthermore, the ability to measure [Ba/Fe] for (at least the cooler) CEMP stars should enable one to separate stars that are likely to be associated with s-process enhancements (the CEMP-s stars) from those that do not exhibit neutron-capture enhancements (the CEMP-no stars).Comment: 27 pages, including 5 tables, 6 figures, accepted for publication in The Astronomical Journa

    Low-Mass Relics of Early Star Formation

    Full text link
    The earliest stars to form in the Universe were the first sources of light, heat and metals after the Big Bang. The products of their evolution will have had a profound impact on subsequent generations of stars. Recent studies of primordial star formation have shown that, in the absence of metals (elements heavier than helium), the formation of stars with masses 100 times that of the Sun would have been strongly favoured, and that low-mass stars could not have formed before a minimum level of metal enrichment had been reached. The value of this minimum level is very uncertain, but is likely to be between 10^{-6} and 10^{-4} that of the Sun. Here we show that the recent discovery of the most iron-poor star known indicates the presence of dust in extremely low-metallicity gas, and that this dust is crucial for the formation of lower-mass second-generation stars that could survive until today. The dust provides a pathway for cooling the gas that leads to fragmentation of the precursor molecular cloud into smaller clumps, which become the lower-mass stars.Comment: Offprint of Nature 422 (2003), 869-871 (issue 24 April 2003

    Carbon Stars in the Hamburg/ESO Survey: Abundances

    Get PDF
    We have carried out a detailed abundance analysis for a sample of 16 carbon stars found among candidate extremely metal-poor (EMP) stars from the Hamburg/ESO Survey. We find that the Fe-metallicities for the cooler C-stars (Teff ~ 5100K) have been underestimated by a factor of ~10 by the standard HES survey tools. The results presented here provided crucial supporting data used by Cohen et al (2006) to derive the frequency of C-stars among EMP stars. C-enhancement in these EMP C-stars appears to be independent of Fe-metallicity and approximately constant at ~1/5 the solar C/H. The mostly low C12/C13 ratios (~4) and the high N abundances in many of these stars suggest that material which has been through proton burning via the CN cycle comprises most of the stellar envelope. C-enhancement is associated with strong enrichment of heavy nuclei beyond the Fe-peak for 12 of the 16 stars. The remaining C-stars from the HES, which tend to be the most Fe-metal poor, show no evidence for enhancement of the heavy elements. Very high enhancements of lead are detected in some of the C-stars with highly enhanced Ba. (We show that) the s-process is responsible for the enhancement of the heavy elements for the majority of the C-stars in our sample. We suggest that both the s-process rich and Ba-normal C-stars result from phenomena associated with mass transfer in binary systems. This leads directly to the progression from C-stars to CH stars and then to Ba stars as the Fe-metallicity increases. (abridged and slightly edited to shorten)Comment: AJ, in press, submitted 13 Dec, 2005, accepted 21 March 200
    • 

    corecore