310 research outputs found

    unDressing Spectacle: An Architectural Discourse on the Event of Space

    Get PDF
    Woven within fashion and dress is the innate ability to create atmosphere and transformative experiences. Architecturally, the façade of a building acts as its skin, having responsibilities that exceed the functions of shelter and materiality. The process of dressing buildings create and shape dynamic relationships with all the elements of its surroundings. Beyond the basic need for convenience and protection, both practices operate as part of a larger world of personified and tailored objects that create ambience and space. This thesis, entitled unDressing Spectacle, explores the parallels between the fashion and architecture within the context of their own industries as well as each other’s. Themes of dress and undress are juxtaposed onto both crafts - literally and metaphorically - at three different scales: the adornment of the individual; the design object within society and the urban fabric; and the discourse between branding and the economic condition. Creating the framework for fantastic events within the urban fabric, this thesis takes the form of a Fashion & Design Event Centre upon which the discourse between user and the design object unfolds. Placed in Toronto’s vibrant west end, the building is a symbol of permanence and an icon for fashion and design. The proposed design is the manifestation of the inherent conflict within the thesis, juxtaposing fashion’s ability to seduce and manufacture desires with the complex structuring of neutral spaces to allow for a multiplicity of users and events. At the city scale, the luminous and dynamic layers of building skin attracts and lures; as users approach and ultimately enter the building, the imagery is transformed into unique atmospheric experiences. This thesis harnesses the glamour of fashion as the medium to ignite the re-imagination of architecture’s value and the interpretation of beauty and style, providing the means for experiences to transcend into a world of spectacle

    Dynamics and functional roles of splicing factor autoregulation

    Get PDF
    Non-spliceosomal splicing factors are essential, conserved regulators of alternative splicing. They provide concentration-dependent control of diverse pre-mRNAs. Many splicing factors direct unproductive splicing of their own pre-mRNAs through negative autoregulation. However, the impact of such feedback loops on splicing dynamics at the single cell level remains unclear. We developed a system to dynamically, quantitatively analyze negative autoregulatory splicing by the SF2 splicing factor in response to perturbations in single HEK293 cells. Here, we show that negative autoregulatory splicing provides critical functions for gene regulation, establishing a ceiling of SF2 protein concentration, reducing cell-cell heterogeneity in SF2 levels, and buffering variation in SF2 transcription. Most importantly, it adapts SF2 splicing activity to variations in demand from other pre-mRNA substrates. A minimal mathematical model of autoregulatory splicing explains these experimentally observed features, and provides values for effective biochemical parameters. These results reveal the unique functional roles that splicing negative autoregulation plays in homeostatically regulating transcriptional programs

    Dynamics and functional roles of splicing factor autoregulation

    Get PDF
    Non-spliceosomal splicing factors are essential, conserved regulators of alternative splicing. They provide concentration-dependent control of diverse pre-mRNAs. Many splicing factors direct unproductive splicing of their own pre-mRNAs through negative autoregulation. However, the impact of such feedback loops on splicing dynamics at the single cell level remains unclear. We developed a system to dynamically, quantitatively analyze negative autoregulatory splicing by the SF2 splicing factor in response to perturbations in single HEK293 cells. Here, we show that negative autoregulatory splicing provides critical functions for gene regulation, establishing a ceiling of SF2 protein concentration, reducing cell-cell heterogeneity in SF2 levels, and buffering variation in SF2 transcription. Most importantly, it adapts SF2 splicing activity to variations in demand from other pre-mRNA substrates. A minimal mathematical model of autoregulatory splicing explains these experimentally observed features, and provides values for effective biochemical parameters. These results reveal the unique functional roles that splicing negative autoregulation plays in homeostatically regulating transcriptional programs

    Comparison of manual and semi-automated delineation of regions of interest for radioligand PET imaging analysis

    Get PDF
    BACKGROUND As imaging centers produce higher resolution research scans, the number of man-hours required to process regional data has become a major concern. Comparison of automated vs. manual methodology has not been reported for functional imaging. We explored validation of using automation to delineate regions of interest on positron emission tomography (PET) scans. The purpose of this study was to ascertain improvements in image processing time and reproducibility of a semi-automated brain region extraction (SABRE) method over manual delineation of regions of interest (ROIs). METHODS We compared 2 sets of partial volume corrected serotonin 1a receptor binding potentials (BPs) resulting from manual vs. semi-automated methods. BPs were obtained from subjects meeting consensus criteria for frontotemporal degeneration and from age- and gender-matched healthy controls. Two trained raters provided each set of data to conduct comparisons of inter-rater mean image processing time, rank order of BPs for 9 PET scans, intra- and inter-rater intraclass correlation coefficients (ICC), repeatability coefficients (RC), percentages of the average parameter value (RM%), and effect sizes of either method. RESULTS SABRE saved approximately 3 hours of processing time per PET subject over manual delineation (p 0.8) for both methods. RC and RM% were lower for the manual method across all ROIs, indicating less intra-rater variance across PET subjects' BPs. CONCLUSION SABRE demonstrated significant time savings and no significant difference in reproducibility over manual methods, justifying the use of SABRE in serotonin 1a receptor radioligand PET imaging analysis. This implies that semi-automated ROI delineation is a valid methodology for future PET imaging analysis

    The Xist lncRNA interacts directly with SHARP to silence transcription through HDAC3

    Get PDF
    Many long non-coding RNAs (lncRNAs) affect gene expression, but the mechanisms by which they act are still largely unknown. One of the best-studied lncRNAs is Xist, which is required for transcriptional silencing of one X chromosome during development in female mammals. Despite extensive efforts to define the mechanism of Xist-mediated transcriptional silencing, we still do not know any proteins required for this role. The main challenge is that there are currently no methods to comprehensively define the proteins that directly interact with a lncRNA in the cell. Here we develop a method to purify a lncRNA from cells and identify proteins interacting with it directly using quantitative mass spectrometry. We identify ten proteins that specifically associate with Xist, three of these proteins—SHARP, SAF-A and LBR—are required for Xist-mediated transcriptional silencing. We show that SHARP, which interacts with the SMRT co-repressor that activates HDAC3, is not only essential for silencing, but is also required for the exclusion of RNA polymerase II (Pol II) from the inactive X. Both SMRT and HDAC3 are also required for silencing and Pol II exclusion. In addition to silencing transcription, SHARP and HDAC3 are required for Xist-mediated recruitment of the polycomb repressive complex 2 (PRC2) across the X chromosome. Our results suggest that Xist silences transcription by directly interacting with SHARP, recruiting SMRT, activating HDAC3, and deacetylating histones to exclude Pol II across the X chromosome

    Twenty year fitness trends in young adults and incidence of prediabetes and diabetes: the CARDIA study

    Get PDF
    The prospective association between cardiorespiratory fitness (CRF) measured in young adulthood and middle age on development of prediabetes, defined as impaired fasting glucose and/or impaired glucose tolerance, or diabetes by middle age remains unknown. We hypothesised that higher fitness levels would be associated with reduced risk for developing incident prediabetes/diabetes by middle age

    A decade of theory as reflected in Psychological Science (2009–2019)

    Get PDF
    The dominant belief is that science progresses by testing theories and moving towards theoretical consensus. While it’s implicitly assumed that psychology operates in this manner, critical discussions claim that the field suffers from a lack of cumulative theory. To examine this paradox, we analysed research published in Psychological Science from 2009–2019 (N = 2,225). We found mention of 359 theories in-text, most were referred to only once. Only 53.66% of all manuscripts included the word theory, and only 15.33% explicitly claimed to test predictions derived from theories. We interpret this to suggest that the majority of research published in this flagship journal is not driven by theory, nor can it be contributing to cumulative theory building. These data provide insight into the kinds of research psychologists are conducting and raises questions about the role of theory in the psychological sciences

    Cluster M Mycobacteriophages Bongo, PegLeg, and Rey with Unusually Large Repertoires of tRNA Isotopes

    Full text link
    Genomic analysis of a large set of phages infecting the common hostMycobacterium smegmatis mc2155 shows that they span considerable genetic diversity. There are more than 20 distinct types that lack nucleotide similarity with each other, and there is considerable diversity within most of the groups. Three newly isolated temperate mycobacteriophages, Bongo, PegLeg, and Rey, constitute a new group (cluster M), with the closely related phages Bongo and PegLeg forming subcluster M1 and the more distantly related Rey forming subcluster M2. The cluster M mycobacteriophages have siphoviral morphologies with unusually long tails, are homoimmune, and have larger than average genomes (80.2 to 83.7 kbp). They exhibit a variety of features not previously described in other mycobacteriophages, including noncanonical genome architectures and several unusual sets of conserved repeated sequences suggesting novel regulatory systems for both transcription and translation. In addition to containing transfer-messenger RNA and RtcB-like RNA ligase genes, their genomes encode 21 to 24 tRNA genes encompassing complete or nearly complete sets of isotypes. We predict that these tRNAs are used in late lytic growth, likely compensating for the degradation or inadequacy of host tRNAs. They may represent a complete set of tRNAs necessary for late lytic growth, especially when taken together with the apparent lack of codons in the same late genes that correspond to tRNAs that the genomes of the phages do not obviously encode
    • …
    corecore