Dynamics and functional roles of splicing factor autoregulation

Abstract

Non-spliceosomal splicing factors are essential, conserved regulators of alternative splicing. They provide concentration-dependent control of diverse pre-mRNAs. Many splicing factors direct unproductive splicing of their own pre-mRNAs through negative autoregulation. However, the impact of such feedback loops on splicing dynamics at the single cell level remains unclear. We developed a system to dynamically, quantitatively analyze negative autoregulatory splicing by the SF2 splicing factor in response to perturbations in single HEK293 cells. Here, we show that negative autoregulatory splicing provides critical functions for gene regulation, establishing a ceiling of SF2 protein concentration, reducing cell-cell heterogeneity in SF2 levels, and buffering variation in SF2 transcription. Most importantly, it adapts SF2 splicing activity to variations in demand from other pre-mRNA substrates. A minimal mathematical model of autoregulatory splicing explains these experimentally observed features, and provides values for effective biochemical parameters. These results reveal the unique functional roles that splicing negative autoregulation plays in homeostatically regulating transcriptional programs

    Similar works