19 research outputs found

    Variation of bending rigidity with material density: bilayer silica with nanoscale holes

    Get PDF
    Two dimensional (2D) materials are a young class of materials that is foreseen to play an important role as building blocks in a range of applications, e.g. flexible electronics. For such applications, mechanical properties such as the bending rigidity Îș are important. Only a few published measurements of the bending rigidity are available for 2D materials. Nearly unexplored is the question of how the 2D material density influences the bending rigidity. Here, we present helium atom scattering measurements on a “holey” bilayer silica with a density of 1.4 mg m−2, corresponding to 1.7 monolayers coverage. We find a bending rigidity of 6.6 ± 0.3 meV, which is lower than previously published measurements for a complete 2D film, where a value of 8.8 ± 0.5 meV was obtained. The decrease of bending rigidity with lower density is in agreement with theoretical predictions.publishedVersio

    Adding a novel material to the 2D toolbox

    Get PDF
    Die Sammlung der zwei-dimensionalen (2D) Materialien ist begrenzt, da sehr wenige Verbindungen stabil bleiben, sobald sie nur aus OberflĂ€chen bestehen. Aufgrund ihrer außergewöhnlichen Eigenschaften sind 2D Materialien jedoch nach wie vor ĂŒberaus begehrt. Vor kurzem wurden atomar definierte, chemisch gesĂ€ttigte SiO2 Bilagen auf verschiedenen MetalloberflĂ€chen prĂ€pariert. Eine solche ultradĂŒnne Silika-Lage wĂ€re eine vielversprechende ErgĂ€nzung zur Familie der 2D Materialien, wenn sie unter Strukturerhalt vom Wachstumssubstrat isoliert werden kann. In dieser Arbeit untersuchen wir die Eigenschaften einer Silika-Bilage im Zusammenhang mit Anwendungen von 2D Materialien. Die Bilage besitzt kristalline und amorphe Regionen, die beide atomar glatt sind. Die kristalline Region besitzt ein hexagonales Gitter mit gleichmĂ€ĂŸiger PorengrĂ¶ĂŸe, wĂ€hrend die amorphe Region einer komplexeren Beschreibung bedarf. In einer Studie von Baublöcken zeigen wir, dass mittelreichweitige Struktureinheiten in Korrelation mit einem Parameter fĂŒr die Bindungswinkelfrustration auftreten. Das Netzwerk verschiedener Nanoporen stellt eine grĂ¶ĂŸenselektive Membran dar, wie wir in einer Adsorptionsstudie zeigen. Pd- und Au-Atome durchdringen den Silikafilm abhĂ€ngig von der GrĂ¶ĂŸe der zur VerfĂŒgung stehenden Nanoporen. Der ultradĂŒnne Film hĂ€lt der Einwirkung verschiedener Lösungsmittel stand und die BestĂ€ndigkeit der Struktur in Wasser wird analysiert. Diese Studien deuten die außergewöhnliche StabilitĂ€t dieser Struktur an. Wir entwickeln eine polymerbasierte mechanische Exfoliation, um den Film von seinem Wachstumssubstrat zu entfernen, und zeigen, dass der Film als intakte Einheit vom Substrat abgelöst wird. Wir prĂ€sentieren anschließend den Transfer des Silikafilms auf ein TEM-Gitter, wo er schraubenartig gewundene Formen annimmt. Weiterhin wurde der Film auf ein Pt(111)-Substrat transferiert. In diesem Fall wird unter Erhalt der Struktur ein Transfer in der GrĂ¶ĂŸenordnung von Millimetern erreicht.The library of two-dimensional (2D) materials is limited, since only very few compounds remain stable when they consist of only surfaces. Yet, due to their extraordinary properties, the hunt for new 2D materials continues. Recently, an atomically defined, self-saturated SiO2 bilayer has been prepared on several metal surfaces. This ultrathin silica sheet would be a promising addition to the family of 2D materials, if it can be isolated from its growth substrate without compromising its structure. In this work, we explore the properties of a silica bilayer grown on Ru(0001) in the context of 2D technology applications. The bilayer sheet exhibits crystalline and amorphous regions, both being atomically flat. The crystalline region possesses a hexagonal lattice with uniform pore size, while the amorphous region requires a more complex description. In a building block study of the amorphous region, we find that medium range structural patterns correlate with a parameter describing the bond angle frustration. The resulting network of different nanopores represents a size-selective membrane, as illustrated in an adsorption study. Pd and Au atoms are shown to penetrate the silica film selectively, depending on the presence of appropriately sized nanopores. The ultrathin silica film is shown to withstand exposure to different solvents and the stability of the structure in water is analyzed. These studies indicate extraordinary stability of this nanostructure. We develop a polymer assisted mechanical exfoliation method for removing the film from the growth substrate, providing evidence that the film is removed as an intact sheet from the growth substrate. We subsequently present the transfer of the silica bilayer to a TEM grid, where it forms micro-ribbons. Further, the film is transferred to a Pt(111) substrate, where mm-scale transfer under retention of the structure is achieved

    Single‐Molecule Magnets DyM2N@C80 and Dy2MN@C80 (M=Sc, Lu): The Impact of Diamagnetic Metals on Dy3+ Magnetic Anisotropy, Dy⋅⋅⋅Dy Coupling, and Mixing of Molecular and Lattice Vibrations

    Full text link
    The substitution of scandium in fullerene single‐molecule magnets (SMMs) DySc2N@C80 and Dy2ScN@C80 by lutetium has been studied to explore the influence of the diamagnetic metal on the SMM performance of dysprosium nitride clusterfullerenes. The use of lutetium led to an improved SMM performance of DyLu2N@C80, which shows a higher blocking temperature of magnetization (TB=9.5 K), longer relaxation times, and broader hysteresis than DySc2N@C80 (TB=6.9 K). At the same time, Dy2LuN@C80 was found to have a similar blocking temperature of magnetization to Dy2ScN@C80 (TB=8 K), but substantially different interactions between the magnetic moments of the dysprosium ions in the Dy2MN clusters. Surprisingly, although the intramolecular dipolar interactions in Dy2LuN@C80 and Dy2ScN@C80 are of similar strength, the exchange interactions in Dy2LuN@C80 are close to zero. Analysis of the low‐frequency molecular and lattice vibrations showed strong mixing of the lattice modes and endohedral cluster librations in k‐space. This mixing simplifies the spin–lattice relaxation by conserving the momentum during the spin flip and helping to distribute the moment and energy further into the lattice

    Precise measurement of angles between two magnetic moments and their configurational stability in single-molecule magnets

    Full text link
    A key parameter for the low-temperature magnetic coupling of in dinuclear lanthanide single-molecule magnets (SMMs) is the barrier UFA resulting from the exchange and dipole interactions between the two 4f moments. Here we extend the pseudospin model previously used to describe the ground state of dinuclear endofullerenes to account for variations in the orientation of the single-ion anisotropy axes and apply it to the two SMMs Dy2ScN@C80 and Dy2TiC@C80. While x-ray magnetic circular dichroism (XMCD) indicates the same Jz=15/2 Dy ground state in both molecules, the Dy-Dy coupling strength and the stability of magnetization is distinct. We demonstrate that both the magnitude of the barrier UFA and the angle between the two 4f moments are determined directly from precise temperature-dependent magnetization data to an accuracy better than 1∘. The experimentally found angles between the 4f moments are in excellent agreement with calculated angles between the quantization axes of the two Dy ions. Theory indicates a larger deviation of the orientation of the Dy magnetic moments from the Dy bond axes to the central ion in Dy2TiC@C80. This may explain the lower stability of the magnetization in Dy2TiC@C80, although it exhibits a ∌49% stronger exchange coupling than in Dy2ScN@C80

    Variation of bending rigidity with material density: bilayer silica with nanoscale holes

    No full text
    Two dimensional (2D) materials are a young class of materials that is foreseen to play an important role as building blocks in a range of applications, e.g. flexible electronics. For such applications, mechanical properties such as the bending rigidity Îș are important. Only a few published measurements of the bending rigidity are available for 2D materials. Nearly unexplored is the question of how the 2D material density influences the bending rigidity. Here, we present helium atom scattering measurements on a “holey” bilayer silica with a density of 1.4 mg m−2, corresponding to 1.7 monolayers coverage. We find a bending rigidity of 6.6 ± 0.3 meV, which is lower than previously published measurements for a complete 2D film, where a value of 8.8 ± 0.5 meV was obtained. The decrease of bending rigidity with lower density is in agreement with theoretical predictions

    Single-Molecule Magnets DyM2N@C80and Dy2MN@C80(M=Sc, Lu): The Impact of Diamagnetic Metals on Dy3++Magnetic Anisotropy, Dy···Dy Coupling, and Mixing of Molecular and Lattice Vibrations

    Get PDF
    The substitution of scandium in fullerene single‐molecule magnets (SMMs) DySc2N@C80 and Dy2ScN@C80 by lutetium has been studied to explore the influence of the diamagnetic metal on the SMM performance of dysprosium nitride clusterfullerenes. The use of lutetium led to an improved SMM performance of DyLu2N@C80, which shows a higher blocking temperature of magnetization (TB=9.5 K), longer relaxation times, and broader hysteresis than DySc2N@C80 (TB=6.9 K). At the same time, Dy2LuN@C80 was found to have a similar blocking temperature of magnetization to Dy2ScN@C80 (TB=8 K), but substantially different interactions between the magnetic moments of the dysprosium ions in the Dy2MN clusters. Surprisingly, although the intramolecular dipolar interactions in Dy2LuN@C80 and Dy2ScN@C80 are of similar strength, the exchange interactions in Dy2LuN@C80 are close to zero. Analysis of the low‐frequency molecular and lattice vibrations showed strong mixing of the lattice modes and endohedral cluster librations in k‐space. This mixing simplifies the spin–lattice relaxation by conserving the momentum during the spin flip and helping to distribute the moment and energy further into the lattice
    corecore