32 research outputs found

    The combination of histone deacetylase inhibitors with immune-stimulating antibodies has potent anti-cancer effects

    Get PDF
    The use of immunotherapy to treat cancer is rapidly gaining momentum. Using pre-clinical mouse models, we have recently demonstrated potent and long lasting tumor regression can be elicited by immune-stimulating monoclonal antibodies (mAbs) when combined with histone deacetylase inhibitors (HDACi) and believe this therapy will have broad application in humans

    Non-invasive dynamic near-infrared imaging and quantification of vascular leakage in vivo

    Get PDF
    Preclinical vascular research has been hindered by a lack of methods that can sensitively image and quantify vascular perfusion and leakage in vivo. In this study, we have developed dynamic near-infrared imaging methods to repeatedly visualize and quantify vascular leakage in mouse skin in vivo, and we have applied these methods to transgenic mice with overexpression of vascular endothelial growth factors VEGF-A or -C. Near-infrared dye conjugates were developed to identify a suitable vascular tracer that had a prolonged circulation lifetime and slow leakage into normal tissue after intravenous injection. Dynamic simultaneous imaging of ear skin and a large blood vessel in the leg enabled determination of the intravascular signal (blood volume fraction) from the tissue signal shortly after injection and quantifications of vascular leakage into the extravascular tissue over time. This method allowed for the sensitive detection of increased blood vascularity and leakage rates in K14-VEGF-A transgenic mice and also reliably measured inflammation-induced changes of vascularity and leakage over time in the same mice. Measurements after injection of recombinant VEGF-A surprisingly revealed increased blood vascular leakage and lymphatic clearance in K14-VEGF-C transgenic mice which have an expanded cutaneous lymphatic vessel network, potentially indicating unanticipated effects of lymphatic drainage on vascular leakage. Increased vascular leakage was also detected in subcutaneous tumors, confirming that the method can also be applied to deeper tissues. This new imaging method might facilitate longitudinal investigations of the in vivo effects of drug candidates, including angiogenesis inhibitors, in preclinical disease model

    Next Generation Sequencing of Reactive Stroma and Residual Breast Cancer Cells in Tumor Bed after Neoadjuvant Chemotherapy

    Full text link
    Primary systemic or neoadjuvant chemotherapy of breast cancer has become a standard therapy option in locally advanced or predefined intrinsic subtypes such as triple negative or Her2 positive breast cancer. Neoadjuvant chemotherapy can result in complete pathological response without residual tumor cells (tumor bed) or partial response and non-response with different amounts of reactive stroma and residual tumor cells. The interaction between therapy regimens and tumoral driver mutations have been extensively studied, although the reactive stroma of the tumor bed received less attention. In this study, we characterized the mutational status of residual breast cancer cells and reactive tumor stroma devoid of residual tumor cells in partial or non-responders using next generation sequencing. Twenty-one post-therapeutic breast surgical specimens after neoadjuvant chemotherapy underwent pathogenic driver-mutation screening using microdissected residual breast cancer cells and in reactive stroma adjacent to tumor bed areas. In reactive stroma, no mutations could be validated. In residual breast cancer cells, mutations were detected in sixteen of twenty-one cases (76%). In nine of these twenty-one cases (43%), pathogenic driver mutations (PIK3CA, PTEN, TP53, FN1, PLAG1) were identified. Pathogenic driver-mutations are exclusively restricted to residual carcinoma cells and are absent in reactive stroma independently from intrinsic breast cancer subtypes or tumor stage. These data suggest that the absence of pathogenic mutations in a tumor bed without residual tumor cells may have prognostic implications after neoadjuvant chemotherapy

    Impact of differing methodologies for serum miRNA-371a-3p assessment in stage I testicular germ cell cancer recurrence

    Full text link
    INTRODUCTION Current evidence shows that serum miR-371a-3p can identify disease recurrence in testicular germ cell tumour (TGCT) patients and correlates with tumour load. Despite convincing evidence showing the advantages of including miR-371a-3p testing to complement and overcome the classical serum tumour markers limitations, the successful introduction of a serum miRNA based test into clinical practice has been impeded by a lack of consensus regarding optimal methodologies and lack of a universal protocol and thresholds. Herein, we investigate two quantitative real-time PCR (qRT-PCR) based pipelines in detecting disease recurrence in stage I TGCT patients under active surveillance, and compare the sensitivity and specificity for each method. METHODS Sequential serum samples collected from 33 stage I TGCT patients undergoing active surveillance were analysed for miR-371a-3p via qRT-PCR with and without an amplification step included. RESULTS Using a pre-amplified protocol, all known recurrences were detected via elevated miR-371a-3p expression, while without pre-amplification, we failed to detect recurrence in 3/10 known recurrence patients. For pre-amplified analysis, sensitivity and specificity was 90% and 94.4% respectively. Without amplification, sensitivity dropped to 60%, but exhibited 100% specificity. DISCUSSION We conclude that incorporating pre-amplification increases sensitivity of miR-371a-3p detection, but produces more false positive results. The ideal protocol for quantification of miR-371a-3p still needs to be determined. TGCT patients undergoing active surveillance may benefit from serum miR-371a-3p quantification with earlier detection of recurrences compared to current standard methods. However, larger cross-institutional studies where samples are processed and data is analysed in a standardised manner are required prior to its routine clinical implementation

    Impact of differing methodologies for serum miRNA-371a-3p assessment in stage I testicular germ cell cancer recurrence.

    Get PDF
    INTRODUCTION Current evidence shows that serum miR-371a-3p can identify disease recurrence in testicular germ cell tumour (TGCT) patients and correlates with tumour load. Despite convincing evidence showing the advantages of including miR-371a-3p testing to complement and overcome the classical serum tumour markers limitations, the successful introduction of a serum miRNA based test into clinical practice has been impeded by a lack of consensus regarding optimal methodologies and lack of a universal protocol and thresholds. Herein, we investigate two quantitative real-time PCR (qRT-PCR) based pipelines in detecting disease recurrence in stage I TGCT patients under active surveillance, and compare the sensitivity and specificity for each method. METHODS Sequential serum samples collected from 33 stage I TGCT patients undergoing active surveillance were analysed for miR-371a-3p via qRT-PCR with and without an amplification step included. RESULTS Using a pre-amplified protocol, all known recurrences were detected via elevated miR-371a-3p expression, while without pre-amplification, we failed to detect recurrence in 3/10 known recurrence patients. For pre-amplified analysis, sensitivity and specificity was 90% and 94.4% respectively. Without amplification, sensitivity dropped to 60%, but exhibited 100% specificity. DISCUSSION We conclude that incorporating pre-amplification increases sensitivity of miR-371a-3p detection, but produces more false positive results. The ideal protocol for quantification of miR-371a-3p still needs to be determined. TGCT patients undergoing active surveillance may benefit from serum miR-371a-3p quantification with earlier detection of recurrences compared to current standard methods. However, larger cross-institutional studies where samples are processed and data is analysed in a standardised manner are required prior to its routine clinical implementation

    HNF1β is a sensitive and specific novel marker for yolk sac tumor: a tissue microarray analysis of 601 testicular germ cell tumors

    Full text link
    Hepatocyte Nuclear Factor 1 beta (HNF1β) is a transcription factor which plays an important role during early organogenesis, especially of the pancreato-biliary and urogenital tract. Furthermore, HNF1β is an established marker in the differential diagnosis of ovarian cancer and shows a distinct nuclear expression in the clear cell carcinoma subtype. Recently, it has been described in yolk sac tumor, which represents a common component in many non-seminomatous germ cell tumors. Due to its broad histologic diversity, the diagnosis may be challenging and additional tools are very helpful in the workup of germ cell tumors. Immunohistochemistry was used to study HNF1β expression in a tissue microarray (TMA) of 601 testicular germ cell tumors including seminoma, embryonal carcinoma, yolk sac tumor, choriocarcinoma, teratoma, germ cell neoplasia in situ (GCNIS), and normal tissue. The expression pattern was compared to glypican 3 (GPC3) and α-fetoprotein (AFP), two markers currently in use for the detection of yolk sac tumor. HNF1β showed a distinct nuclear staining in comparison to the cytoplasmic pattern of GPC3 and AFP. The sensitivity and specificity of HNF1β were 85.4% and 96.5%, of GPC3 83.3% and 90.7%, of AFP 62.5% and 97.7%. We conclude that HNF1β allows a reliable distinction of yolk sac tumor from other germ cell tumor components. Therefore, we propose HNF1β as a novel and robust marker in the immunohistochemical workup of testicular germ cell tumors

    Non-invasive dynamic near-infrared imaging and quantification of vascular leakage in vivo.

    Get PDF
    Preclinical vascular research has been hindered by a lack of methods that can sensitively image and quantify vascular perfusion and leakage in vivo. In this study, we have developed dynamic near-infrared imaging methods to repeatedly visualize and quantify vascular leakage in mouse skin in vivo, and we have applied these methods to transgenic mice with overexpression of vascular endothelial growth factors VEGF-A or -C. Near-infrared dye conjugates were developed to identify a suitable vascular tracer that had a prolonged circulation lifetime and slow leakage into normal tissue after intravenous injection. Dynamic simultaneous imaging of ear skin and a large blood vessel in the leg enabled determination of the intravascular signal (blood volume fraction) from the tissue signal shortly after injection and quantifications of vascular leakage into the extravascular tissue over time. This method allowed for the sensitive detection of increased blood vascularity and leakage rates in K14-VEGF-A transgenic mice and also reliably measured inflammation-induced changes of vascularity and leakage over time in the same mice. Measurements after injection of recombinant VEGF-A surprisingly revealed increased blood vascular leakage and lymphatic clearance in K14-VEGF-C transgenic mice which have an expanded cutaneous lymphatic vessel network, potentially indicating unanticipated effects of lymphatic drainage on vascular leakage. Increased vascular leakage was also detected in subcutaneous tumors, confirming that the method can also be applied to deeper tissues. This new imaging method might facilitate longitudinal investigations of the in vivo effects of drug candidates, including angiogenesis inhibitors, in preclinical disease models

    Findings questioning the involvement of Sigma-1 receptor in the uptake of anisamide-decorated particles.

    No full text
    Anisamide is a small benzamide previously suggested as a tumor-targeting ligand for nanocarriers and it has been shown to enhance tumor uptake in vitro as well as in vivo when grafted on the nanoparticle surface. Anisamide has been hypothesized to interact with the Sigma-1 receptor, based on the binding of larger benzamides, which contain anisamide in their structure, to this receptor. However, the interaction between anisamide and Sigma-1 receptor has never been thoroughly studied. We developed fluorescent PEGylated particles decorated with anisamide, which were preferentially taken up in vitro by melanoma cells compared to macrophages. The anisamide-decorated particles were used to study their interaction with the Sigma-1 receptor. The absence of competition of Sigma-1 receptor ligands for the particle uptake was a first indication that the receptor might not be involved in the uptake process. In addition, the extent of particle uptake did not correlate with the levels of cellular expression of Sigma-1 receptor in the cell models tested. Immunostaining of the receptor on melanoma cells revealed intracellular localization, indirectly excluding the possibility of anisamide binding to the receptor when grafted on the particles. All these data question the previously suggested Sigma-1 receptor-mediated uptake of the anisamide-decorated particles, a finding which may have an impact on the use of anisamide as a targeting ligand

    Morphological spectrum and molecular features of somatic malignant transformation in germ cell tumours.

    No full text
    AIMS Somatic malignant transformation (SMT) arising in germ cell tumours (GCTs) is an infrequent, but clinically relevant event. There is only limited knowledge on the morphological spectrum of SMT, and therapeutic management of these patients is poorly defined. In this work we revisit two consecutive case series (n=756) of GCTs. Clinicopathological data of SMT arising in GCT were determined, with focus on the histopathological spectrum, and molecular aspects were obtained by Fluorescence in situ Hybridization (FISH) and Next Generation Sequencing (NGS). METHODS AND RESULTS 30 male patients (28 primary testicular, 2 primary extragonadal) were included. These patients represent 4% of GCT patients diagnosed in two institutes (University Hospital Zurich and IPO Porto). The most common SMT were adenocarcinoma (n=8), embryonic-type neuroectodermal tumours (ENETs, n=8) and rhabdomyosarcoma (n=6), but a wide range of challenging morphologies were depicted, including low-grade neuroglial tumour, adenosquamous carcinoma, neuroblastoma and neuroendocrine carcinoma. SMT was found in 15 primary tumour samples and in 27 metastatic samples of these 30 patients, the latter showing poorer overall-survival. Adenocarcinoma occurred only in metastasis post-chemotherapy and in one primary retroperitoneal GCT with SMT, but not in GCT of the testis. 12p gains were identified by FISH in all cases. NGS results were available in 6 patients. Clinical trials and/or targeted treatments based on the molecular profile of SMT were recommended in 4 patients. CONCLUSIONS SMT arising in GCTs represents a diagnostic challenge and should be confirmed by a specialized uropathologist. NGS based treatment recommendations may improve outcome of these patients
    corecore