67 research outputs found

    Introducing new functions into (and onto) virus-like particles

    Get PDF
    Leviphage Qß and PP7 are well studied viruses that infect E. coli. They also provide highly stable and tailorable capsid protein structures that can be manipulated in a number of ways by the molecular biologist and chemist. We will describe our work with both particles, designed to give them new binding, shielding, and catalytic properties. This involves the expression of hybrid particles bearing catalytic protein domains on the inside or outside, the use of standard polymerization methods to grow organic polymers from the surface or into the interior of the particles, and the marriage of these particles with degradable hydrogel carriers Please click Additional Files below to see the full abstract

    Thoracoscopic versus open lobectomy debate: the pro argument

    Get PDF
    Introduction: Controversy persists about the role of VATS lobectomy for patients with lung cancer. This is particularly true in Europe, where VATS (video assisted thoracic surgery) lobectomy is performed for lung cancer less often than in the USA or Japan. This article reviews existing data comparing the results of VATS vs. open lobectomy for the treatment of lung cancer in order to provide a scientific basis for a rational assessment of this issue

    Movement disorders after hypoxic brain injury following cardiac arrest in adults

    Get PDF
    Background and purpose: Post-hypoxic movement disorders and chronic post-hypoxic myoclonus are rare complications after cardiac arrest in adults. Our study investigates the clinical spectrum, neuroimaging results, therapy and prognosis of these debilitating post-hypoxic sequelae. Methods: This retrospective study included 72 patients from the neurological intensive care unit at a university hospital, who were diagnosed with hypoxic-ischaemic encephalopathy after cardiac arrest between January 2007 and September 2018. Clinical records were screened for occurrence of post-hypoxic movement disorders and chronic post-hypoxic myoclonus. Affected patients were further analysed for applied neuroprognostic tests, administered therapy and treatment response, and the outcome of these movement disorders and neurological function. Results: Nineteen out of 72 screened patients exhibited post-hypoxic motor symptoms. Basal ganglia injury was the most likely neuroanatomical correlate of movement disorders as indicated by T1 hyperintensities and hypometabolism of this region in magnetic resonance imaging and positron emission tomography computed tomography. Levomepromazine and intrathecal baclofen showed first promising and mostly prompt responses to control these post-hypoxic movement disorders and even hyperkinetic storms. In contrast, chronic post-hypoxic myoclonus best responded to co-application of clonazepam, levetiracetam and primidone. Remission rates of post-hypoxic movement disorders and chronic post-hypoxic myoclonus were 58% and 50%, respectively. Affected patients seemed to present a rather good recovery of cognitive functions in contrast to the often more severe physical deficits. Conclusions: Post-hypoxic movement disorders associated with pronounced basal ganglia dysfunction might be efficiently controlled by levomepromazine or intrathecal baclofen. Their occurrence might be an indicator for a more unfavourable, but often not devastating, neurological outcome

    Aircraft-based observation of meteoric material in lower-stratospheric aerosol particles between 15 and 68° N

    Get PDF
    We analyse aerosol particle composition measurements from five research missions between 2014 and 2018 to assess the meridional extent of particles containing meteoric material in the upper troposphere and lower stratosphere (UTLS). Measurements from the Jungfraujoch mountaintop site and a low-altitude aircraft mission show that meteoric material is also present within middle- and lowertropospheric aerosol but within only a very small proportion of particles. For both the UTLS campaigns and the lowerand mid-troposphere observations, the surements were conducted with single-particle laser ablation mass spectrometers with bipolar-ion detection, which enabled us to measure the chemical composition of particles in a diameter range of approximately 150 nm to 3 µm

    Alternative Oxidase Attenuates Cigarette Smoke-induced Lung Dysfunction and Tissue Damage

    Get PDF
    Cigarette smoke (CS) exposure is the predominant risk factor for the development of chronic obstructive pulmonary disease (COPD) and the third leading cause of death worldwide. We aimed to elucidate whether mitochondrial respiratory inhibition and oxidative stress are triggers in its etiology. In different models of CS exposure, we investigated the effect onlung remodeling and cell signaling of restoring mitochondrial respiratory electron flow using alternative oxidase (AOX), which bypasses the cytochrome segment of the respiratory chain. AOX attenuated CS-induced lung tissue destruction and loss of function in mice exposed chronically to CS for 9 months. It preserved the cell viability of isolated mouse embryonic fibroblasts treated with CS condensate, limited the induction of apoptosis, and decreased the production of reactive oxygen species (ROS). In contrast, the earlyphase inflammatory response induced by acute CS exposure of mouse lung, i.e., infiltration by macrophages and neutrophils and adverse signaling, was unaffected. The use of AOX allowed us to obtain novel pathomechanistic insights into CS-induced cell damage,mitochondrial ROS production, and lung remodeling. Our findings implicate mitochondrial respiratory inhibition as a key pathogenicmechanism of CS toxicity in the lung. We propose AOX as a novel tool to study CS-related lung remodeling and potentially to counteract CS-induced ROS production and cell damage

    Combined therapy with ibrutinib and bortezomib followed by ibrutinib maintenance in relapsed or refractory mantle cell lymphoma and high-risk features: a phase 1/2 trial of the European MCL network (SAKK 36/13).

    Get PDF
    BACKGROUND The Bruton's tyrosine kinase inhibitor ibrutinib and the proteasome inhibitor bortezomib have single-agent activity, non-overlapping toxicities, and regulatory approval in mantle cell lymphoma (MCL). In vitro, their combination provides synergistic cytotoxicity. In this investigator-initiated phase 1/2 trial, we established the recommended phase 2 dose of ibrutinib in combination with bortezomib, and assessed its efficacy in patients with relapsed or refractory MCL. METHODS In this phase 1/2 study open in 15 sites in Switzerland, Germany and Italy, patients with relapsed or refractory MCL after ≤2 lines of chemotherapy and both ibrutinib-naïve and bortezomib-naïve received six cycles of ibrutinibb and bortezomib, followed by ibrutinib maintenance. For the phase 1 study, a standard 3 + 3 dose escalation design was used to determine the recommended phase 2 dose of ibrutinib in combination with bortezomib. The primary endpoint in phase 1 was the dose limiting toxicities in cycle 1. The phase 2 study was an open-label, single-arm trial with a Simon's two-stage min-max design, with a primary endpoint of overall response rate (ORR) assessed by CT/MRI. This study was registered with ClinicalTrials.gov, NCT02356458. FINDINGS Between August 2015 and September 2016, nine patients were treated in the phase 1 study, and 49 patients were treated between November 2016 and March 2020 in the phase 2 of the trial. The ORR was 81.8% (90% CI 71.1, 89.8%, CR(u) 21.8%) which increased with continued ibrutinib (median 10.6 months) to 87.3%, (CR(u) 41.8%). 75.6% of patients had at least one high-risk feature (Ki-67 > 30%, blastoid or pleomorphic variant, p53 overexpression, TP53 mutations and/or deletions). In these patients, ibrutinib and bortezomib were also effective with an ORR of 74%, increasing to 82% during maintenance. With a median follow-up of 25.4 months, the median duration of response was 22.7, and the median PFS was 18.6 months. PFS reached 30.8 and 32.9 months for patients with a CR or Cru, respectively. INTERPRETATION The combination of ibrutinib and bortezomib shows durable efficacy in patients with relapsed or refractory MCL, also in the presence of high-risk features. FUNDING SAKK (Hubacher Fund), Swiss State Secretariat for Education, Research and Innovation, Swiss Cancer Research Foundation, and Janssen

    Reconciliation of essential process parameters for an enhanced predictability of Arctic stratospheric ozone loss and its climate interactions

    Get PDF
    Significant reductions in stratospheric ozone occur inside the polar vortices each spring when chlorine radicals produced by heterogeneous reactions on cold particle surfaces in winter destroy ozone mainly in two catalytic cycles, the ClO dimer cycle and the ClO/BrO cycle. Chlorofluorocarbons (CFCs), which are responsible for most of the chlorine currently present in the stratosphere, have been banned by the Montreal Protocol and its amendments, and the ozone layer is predicted to recover to 1980 levels within the next few decades. During the same period, however, climate change is expected to alter the temperature, circulation patterns and chemical composition in the stratosphere, and possible geo-engineering ventures to mitigate climate change may lead to additional changes. To realistically predict the response of the ozone layer to such influences requires the correct representation of all relevant processes. The European project RECONCILE has comprehensively addressed remaining questions in the context of polar ozone depletion, with the objective to quantify the rates of some of the most relevant, yet still uncertain physical and chemical processes. To this end RECONCILE used a broad approach of laboratory experiments, two field missions in the Arctic winter 2009/10 employing the high altitude research aircraft M55-Geophysica and an extensive match ozone sonde campaign, as well as microphysical and chemical transport modelling and data assimilation. Some of the main outcomes of RECONCILE are as follows: (1) vortex meteorology: the 2009/10 Arctic winter was unusually cold at stratospheric levels during the six-week period from mid-December 2009 until the end of January 2010, with reduced transport and mixing across the polar vortex edge; polar vortex stability and how it is influenced by dynamic processes in the troposphere has led to unprecedented, synoptic-scale stratospheric regions with temperatures below the frost point; in these regions stratospheric ice clouds have been observed, extending over >106km2 during more than 3 weeks. (2) Particle microphysics: heterogeneous nucleation of nitric acid trihydrate (NAT) particles in the absence of ice has been unambiguously demonstrated; conversely, the synoptic scale ice clouds also appear to nucleate heterogeneously; a variety of possible heterogeneous nuclei has been characterised by chemical analysis of the non-volatile fraction of the background aerosol; substantial formation of solid particles and denitrification via their sedimentation has been observed and model parameterizations have been improved. (3) Chemistry: strong evidence has been found for significant chlorine activation not only on polar stratospheric clouds (PSCs) but also on cold binary aerosol; laboratory experiments and field data on the ClOOCl photolysis rate and other kinetic parameters have been shown to be consistent with an adequate degree of certainty; no evidence has been found that would support the existence of yet unknown chemical mechanisms making a significant contribution to polar ozone loss. (4) Global modelling: results from process studies have been implemented in a prognostic chemistry climate model (CCM); simulations with improved parameterisations of processes relevant for polar ozone depletion are evaluated against satellite data and other long term records using data assimilation and detrended fluctuation analysis. Finally, measurements and process studies within RECONCILE were also applied to the winter 2010/11, when special meteorological conditions led to the highest chemical ozone loss ever observed in the Arctic. In addition to quantifying the 2010/11 ozone loss and to understand its causes including possible connections to climate change, its impacts were addressed, such as changes in surface ultraviolet (UV) radiation in the densely populated northern mid-latitudes

    Reconciliation of essential process parameters for an enhanced predictability of Arctic stratospheric ozone loss and its climate interactions : (RECONCILE) ; activities and results

    Get PDF
    The international research project RECONCILE has addressed central questions regarding polar ozone depletion, with the objective to quantify some of the most relevant yet still uncertain physical and chemical processes and thereby improve prognostic modelling capabilities to realistically predict the response of the ozone layer to climate change. This overview paper outlines the scope and the general approach of RECONCILE, and it provides a summary of observations and modelling in 2010 and 2011 that have generated an in many respects unprecedented dataset to study processes in the Arctic winter stratosphere. Principally, it summarises important outcomes of RECONCILE including (i) better constraints and enhanced consistency on the set of parameters governing catalytic ozone destruction cycles, (ii) a better understanding of the role of cold binary aerosols in heterogeneous chlorine activation, (iii) an improved scheme of polar stratospheric cloud (PSC) processes that includes heterogeneous nucleation of nitric acid trihydrate (NAT) and ice on non-volatile background aerosol leading to better model parameterisations with respect to denitrification, and (iv) long transient simulations with a chemistry-climate model (CCM) updated based on the results of RECONCILE that better reproduce past ozone trends in Antarctica and are deemed to produce more reliable predictions of future ozone trends. The process studies and the global simulations conducted in RECONCILE show that in the Arctic, ozone depletion uncertainties in the chemical and microphysical processes are now clearly smaller than the sensitivity to dynamic variability

    Decline in the number of patients with meningitis in German hospitals during the COVID-19 pandemic

    Get PDF
    BACKGROUND AND OBJECTIVES: In 2020, a wide range of hygiene measures was implemented to mitigate infections caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). In consequence, pulmonary infections due to other respiratory pathogens also decreased. Here, we evaluated the number of bacterial and viral meningitis and encephalitis cases during the coronavirus disease 2019 (COVID-19) pandemic. METHODS: In a multicentre retrospective analysis of data from January 2016 until December 2020, numbers of patients diagnosed with bacterial meningitis and other types of CNS infections (such as viral meningitis and encephalitis) at 26 German hospitals were studied. Furthermore, the number of common meningitis-preceding ear-nose-throat infections (sinusitis, mastoiditis and otitis media) was evaluated. RESULTS: Compared to the previous years, the total number of patients diagnosed with pneumococcal meningitis was reduced (n = 64 patients/year in 2020 vs. n = 87 to 120 patients/year between 2016 and 2019, all p < 0.05). Additionally, the total number of patients diagnosed with otolaryngological infections was significantly lower (n = 1181 patients/year in 2020 vs. n = 1525 to 1754 patients/year between 2016 and 2019, all p < 0.001). We also observed a decline in viral meningitis and especially enterovirus meningitis (n = 25 patients/year in 2020 vs. n = 97 to 181 patients/year between 2016 and 2019, all p < 0.001). DISCUSSION: This multicentre retrospective analysis demonstrates a decline in the number of patients treated for viral and pneumococcal meningitis as well as otolaryngological infections in 2020 compared to previous years. Since the latter often precedes pneumococcal meningitis, this may point to the significance of the direct spread of pneumococci from an otolaryngological focus such as mastoiditis to the brain as one important pathophysiological route in the development of pneumococcal meningitis. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s00415-022-11034-w
    corecore