45 research outputs found

    Identification of a Conserved Region of Plasmodium falciparum MSP3 Targeted by Biologically Active Antibodies to Improve Vaccine Design

    Get PDF
    Merozoite surface protein 3 (MSP3) is a target of antibody-dependent cellular inhibition (ADCI), a protective mechanism against Plasmodium falciparum malaria. From the C-terminal half of the molecule, 6 overlapping peptides were chosen to characterize human immune responses. Each peptide defined at least 1 non-crossreactive B cell epitope. Distinct patterns of antibody responses, by level and IgG subclass distribution, were observed in inhabitants of a malaria-endemic area. Antibodies affinity purified toward each peptide differed in their functional capacity to mediate parasite killing in ADCI assays: 3 of 6 overlapping peptides had a major inhibitory effect on parasite growth. This result was confirmed by the passive transfer of anti-MSP3 antibodies in vivo in a P. falciparum mouse model. T helper cell epitopes were identified in each peptide. Antigenicity and functional assays identified a 70-amino acid conserved domain of MSP3 as a target of biologically active antibodies to be included in future vaccine constructs based on MSP

    Pre-Clinical Assessment of Novel Multivalent MSP3 Malaria Vaccine Constructs

    Get PDF
    BACKGROUND: MSP3 has been shown to induce protection against malaria in African children. The characterization of a family of Plasmodium falciparum merozoite surface protein 3 (MSP3) antigens sharing a similar structural organization, simultaneously expressed on the merozoite surface and targeted by a cross-reactive network of protective antibodies, is intriguing and offers new perspectives for the development of subunit vaccines against malaria. METHODS: Eight recombinant polyproteins containing carefully selected regions of this family covalently linked in different combinations were all efficiently produced in Escherichia coli. The polyproteins consisted of one monovalent, one bivalent, one trivalent, two tetravalents, one hexavalent construct, and two tetravalents incorporating coiled-coil repeats regions from LSA3 and p27 vaccine candidates. RESULTS: All eight polyproteins induced a strong and homogeneous antibody response in mice of three distinct genotypes, with a dominance of cytophilic IgG subclasses, lasting up to six months after the last immunization. Vaccine-induced antibodies exerted a strong monocyte-mediated in vitro inhibition of P. falciparum growth. Naturally acquired antibodies from individuals living in an endemic area of Senegal recognized the polyproteins with a reactivity mainly constituted of cytophilic IgG subclasses. CONCLUSIONS: Combination of genetically conserved and antigenically related MSP3 proteins provides promising subunit vaccine constructs, with improved features as compared to the first generation construct employed in clinical trials (MSP3-LSP). These multivalent MSP3 vaccine constructs expand the epitope display of MSP3 family proteins, and lead to the efficient induction of a wider range of antibody subclasses, even in genetically different mice. These findings are promising for future immunization of genetically diverse human populations

    A Malaria Vaccine That Elicits in Humans Antibodies Able to Kill Plasmodium falciparum

    Get PDF
    BACKGROUND: Plasmodium falciparum merozoite surface protein 3 is a malaria vaccine candidate that was identified, characterised, and developed based on a unique immuno-clinical approach. The vaccine construct was derived from regions fully conserved among various strains and containing B cell epitopes targeted by human antibodies (from malaria-immune adults) that are able to mediate a monocyte-dependent parasite killing effect. The corresponding long synthetic peptide was administered to 36 volunteers, with either alum or Montanide ISA720 as adjuvant. METHODS AND FINDINGS: Both formulations induced cellular and humoral immune responses. With alum, the responses lasted up to 12 mo. The vaccine-induced antibodies were predominantly of cytophilic classes, i.e., able to cooperate with effector cells. In vitro, the antibodies induced an inhibition of the P. falciparum erythrocytic growth in a monocyte-dependent manner, which was in most instances as high as or greater than that induced by natural antibodies from immune African adults. In vivo transfer of the volunteers' sera into P. falciparum–infected humanized SCID mice profoundly reduced or abrogated parasitaemia. These inhibitory effects were related to the antibody reactivity with the parasite native protein, which was seen in 60% of the volunteers, and remained in samples taken 12 mo postimmunisation. CONCLUSION: This is the first malaria vaccine clinical trial to clearly demonstrate antiparasitic activity by vaccine-induced antibodies by both in vitro and in vivo methods. The results, showing the induction of long-lasting antibodies directed to a fully conserved polypeptide, also challenge current concepts about malaria vaccines, such as unavoidable polymorphism, low antigenicity, and poor induction of immune memory

    Understanding Human-Plasmodium falciparum Immune Interactions Uncovers the Immunological Role of Worms

    Get PDF
    BACKGROUND: Former studies have pointed to a monocyte-dependent effect of antibodies in protection against malaria and thereby to cytophilic antibodies IgG1 and IgG3, which trigger monocyte receptors. Field investigations have further documented that a switch from non-cytophilic to cytophilic classes of antimalarial antibodies was associated with protection. The hypothesis that the non-cytophilic isotype imbalance could be related to concomittant helminthic infections was supported by several interventions and case-control studies. METHODS AND FINDINGS: We investigated here the hypothesis that the delayed acquisition of immunity to malaria could be related to a worm-induced Th2 drive on antimalarial immune responses. IgG1 to IgG4 responses against 6 different parasite-derived antigens were analyzed in sera from 203 Senegalese children, half carrying intestinal worms, presenting 421 clinical malaria attacks over 51 months. Results show a significant correlation between the occurrence of malaria attacks, worm carriage (particularly that of hookworms) and a decrease in cytophilic IgG1 and IgG3 responses and an increase in non-cytophilic IgG4 response to the merozoite stage protein 3 (MSP3) vaccine candidate. CONCLUSION: The results confirm the association with protection of anti-MSP3 cytophilic responses, confirm in one additional setting that worms increase malaria morbidity and show a Th2 worm-driven pattern of anti-malarial immune responses. They document why large anthelminthic mass treatments may be worth being assessed as malaria control policies

    On frogs, toxins and true friendship: an atypical case report

    No full text
    Abstract The authors report a series of events including the scientific interest for poisonous dendrobates of French Guiana, the human confrontation with the immensity of the evergreen rainforest, the fragility of the best-prepared individuals to a rough life, and the unique and very special manifestation of a solid friendship between two experts and enthusiasts of outdoor life. In the evergreen forest of South America, as in many other scientific field expeditions, everything may suddenly go wrong, and nothing can prepare researchers to accidents that may occur in a succession of uncontrollable errors once the first mistake is done. This is what happened during an expedition in search for dendrobates by an experienced forest guide and naturalist. The authors decided to report the story, considering that it deserved to be brought to the attention of those interested in venomous animals and toxins, in order to illustrate the potential danger of dealing with these organisms

    The genetic control of immunity to Plasmodium infection

    Get PDF
    International audienceMalaria remains a major worldwide public health problem with ~207 million cases and ~627,000 deaths per year, mainly affecting children under five years of age in Africa. Recent efforts at elaborating a genetic architecture of malaria have focused on severe malaria, leading to the identification of two new genes and confirmation of previously known variants in HBB, ABO and G6PD, by exploring the whole human genome in genome-wide association (GWA) studies. Molecular pathways controlling phenotypes representing effectiveness of host immunity, notably parasitemia and IgG levels, are of particular interest given the current lack of an efficacious vaccine and the need for new treatment options. Results: We propose a global causal framework of malaria phenotypes implicating progression from the initial infection with Plasmodium spp. to the development of the infection through liver and blood-stage multiplication cycles (parasitemia as a quantitative trait), to clinical malaria attack, and finally to severe malaria. Genetic polymorphism may control any of these stages, such that preceding stages act as mediators of subsequent stages. A biomarker of humoral immunity, IgG levels, can also be integrated into the framework, potentially mediating the impact of polymorphism by limiting parasitemia levels. Current knowledge of the genetic basis of parasitemia levels and IgG levels is reviewed through key examples including the hemoglobinopathies, showing that the protective effect of HBB variants on malaria clinical phenotypes may partially be mediated through parasitemia and cytophilic IgG levels. Another example is the IgG receptor FcγRIIa, encoded by FCGR2A, such that H131 homozygotes displayed higher IgG2 levels and were protective against high parasitemia and onset of malaria symptoms as shown in a causal diagram. Conclusions: We thus underline the value of parasitemia and IgG levels as phenotypes in the understanding of the human genetic architecture of malaria, and the need for applying GWA approaches to these phenotypes

    Plasmodium falciparum Merozoite Surface Protein 6 Displays Multiple Targets for Naturally Occurring Antibodies That Mediate Monocyte-Dependent Parasite Killing

    No full text
    Plasmodium falciparum MSP6 is a merozoite surface antigen that shows organization and sequence homologies similar to those of MSP3. Within its C-terminus conserved region, it presents some epitopes that are cross-reactive with MSP3 and others that are not, both being targets of naturally occurring antibodies that block the P. falciparum erythrocytic cycle in cooperation with monocytes

    Association between Protection against Clinical Malaria and Antibodies to Merozoite Surface Antigens in an Area of Hyperendemicity in Myanmar: Complementarity between Responses to Merozoite Surface Protein 3 and the 220-Kilodalton Glutamate-Rich Protein

    No full text
    We performed a longitudinal clinical and parasitological follow-up study in OoDo, a village in southeast Asia in which malaria is hyperendemic, in order to assess the association between protection against malaria attacks and antibodies to three currently evaluated vaccine candidates, merozoite surface protein 1 (MSP1), MSP3, and the 220-kDa glutamate-rich protein (GLURP) from Plasmodium falciparum. Our results showed that the levels of cytophilic immunoglobulin G3 (IgG3) antibodies against conserved regions of MSP3 and GLURP were significantly correlated with protection against clinical P. falciparum malaria. In contrast, the levels of noncytophilic IgG4 antibodies against GLURP increased with the number of malaria attacks. Furthermore, we observed a complementary effect of the MSP3- and GLURP-specific IgG3 antibodies in relation to malaria protection. In the individuals that did not respond to one of the antigens, a strong response to the other antigen was consistently detected and was associated with protection, suggesting that induction of antibodies against both MSP3 and GLURP could be important for the development of protective immunity. The complementarity of the responses to the two main targets of antibody-dependent cellular inhibition identified to date provides the first rational basis for combining these two antigens in a hybrid vaccine formulation
    corecore