165 research outputs found

    Electrochemical Kinetic Study of LiFePO4 Using Cavity Microelectrode

    Get PDF
    Lithium cation insertion and extraction in LiFePO4 were electrochemically studied with a cavity microelectrode (CME). Cyclic voltammetry measurements were used to characterize the kinetics of the material. LiFePO4 was successfully cycled from 0.1 mV s–1 up to 1 V s–1 and is therefore a suitable material to be used in high power applications, such as asymmetric hybrid supercapacitors. Several kinetic behaviors were observed depending on the sweep rate. The LiFePO4 was found to follow different kinetics behaviors depending of the sweep rate. The charge storage mechanisms were investigated for Liþ extraction/insertion

    Structural and Mechanistic Insights into Fast Lithium-Ion Conduction in Li4SiO4-Li3PO4 Solid Electrolytes.

    Get PDF
    Solid electrolytes that are chemically stable and have a high ionic conductivity would dramatically enhance the safety and operating lifespan of rechargeable lithium batteries. Here, we apply a multi-technique approach to the Li-ion conducting system (1-z)Li4SiO4-(z)Li3PO4 with the aim of developing a solid electrolyte with enhanced ionic conductivity. Previously unidentified superstructure and immiscibility features in high-purity samples are characterized by X-ray and neutron diffraction across a range of compositions (z = 0.0-1.0). Ionic conductivities from AC impedance measurements and large-scale molecular dynamics (MD) simulations are in good agreement, showing very low values in the parent phases (Li4SiO4 and Li3PO4) but orders of magnitude higher conductivities (10(-3) S/cm at 573 K) in the mixed compositions. The MD simulations reveal new mechanistic insights into the mixed Si/P compositions in which Li-ion conduction occurs through 3D pathways and a cooperative interstitial mechanism; such correlated motion is a key factor in promoting high ionic conductivity. Solid-state (6)Li, (7)Li, and (31)P NMR experiments reveal enhanced local Li-ion dynamics and atomic disorder in the solid solutions, which are correlated to the ionic diffusivity. These unique insights will be valuable in developing strategies to optimize the ionic conductivity in this system and to identify next-generation solid electrolytes.The ALISTORE ERI and CNRS are acknowledged for supporting Y.D. through a joint Ph.D. scholarship between Picardie (France) and Bath (UK). The authors thank D. Sheptyakov (PSI, Switzerland) and M. Bianchini (ILL-Grenoble, France) for assistance with neutron diffraction experiments, and M. T. Dunstan (Cambridge, UK) for assistance with NMR experiments. Financial support from the EPSRC Energy Materials Programme (Grant EP/K016288) is gratefully acknowledged. The HPC Materials Chemistry Consortium (EP/L000202) allowed use of the ARCHER facilities. O.P. and S.E. acknowledge support from a Marie Skłodowska-Curie Fellowship (H2020-MSCA-IF-2014-EF, no. 655444) and an ERASMUS+ scholarship, respectively.This is the author accepted manuscript. The final version is available from the American Chemical Society via http://dx.doi.org/10.1021/jacs.5b0444

    Enhancing the Lithium Ion Conductivity in Lithium Superionic Conductor (LISICON) Solid Electrolytes through a Mixed Polyanion Effect

    Get PDF
    Lithium superionic conductor (LISICON)-related compositions Li<sub>4±<i>x</i></sub>Si<sub>1–<i>x</i></sub>X<sub><i>x</i></sub>O<sub>4</sub> (X = P, Al, or Ge) are important materials that have been identified as potential solid electrolytes for all solid state batteries. Here, we show that the room temperature lithium ion conductivity can be improved by several orders of magnitude through substitution on Si sites. We apply a combined computer simulation and experimental approach to a wide range of compositions (Li<sub>4</sub>SiO<sub>4</sub>, Li<sub>3.75</sub>Si<sub>0.75</sub>P<sub>0.25</sub>O<sub>4</sub>, Li<sub>4.25</sub>Si<sub>0.75</sub>Al<sub>0.25</sub>O<sub>4</sub>, Li<sub>4</sub>Al<sub>0.33</sub>Si<sub>0.33</sub>P<sub>0.33</sub>O<sub>4</sub>, and Li<sub>4</sub>Al<sub>1/3</sub>Si<sub>1/6</sub>Ge<sub>1/6</sub>P<sub>1/3</sub>O<sub>4</sub>) which include new doped materials. Depending on the temperature, three different Li<sup>+</sup> ion diffusion mechanisms are observed. The polyanion mixing introduced by substitution lowers the temperature at which the transition to a superionic state with high Li<sup>+</sup> ion conductivity occurs. These insights help to rationalize the mechanism of the lithium ion conductivity enhancement and provide strategies for designing materials with promising transport properties

    Feasibility and Limitations of High-Voltage Lithium-Iron-Manganese Spinels

    Get PDF
    Positive electrodes with high energy densities for Lithium-ion batteries (LIB) almost exclusively rely on toxic and costly transition metals. Iron based high voltage spinels can be feasible alternatives, but the phase stabilities and optimal chemistries for LIB applications are not fully understood yet. In this study, LiFex_{x}Mn2x_{2-x}O4_{4} spinels with x = 0.2 to 0.9 were synthesized by solid-state reaction at 800 °C. High-resolution diffraction methods reveal gradual increasing partial spinel inversion as a function of x and early secondary phase formation. Mössbauer spectroscopy was used to identify the Fe valences, spin states and coordination. The unexpected increasing lattice parameters with Fe substitution for Mn was explained considering the anion-cation average bond lengths determined by Rietveld analysis and Mn3+^{3+} overstoichiometries revealed by cyclic voltammetry. Finally, galvanostatic cycling of Li-Fe-Mn-spinels shows that the capacity fading is correlated to increased cell polarization for higher upper charging cut-off voltage, Fe-content and C-rate. The electrolyte may also contribute significantly to the cycling limitations

    Revealing defects in crystalline lithium-ion battery electrodes by solid state NMR: applications to LiVPO4F

    Get PDF
    International audienceIdentifying and characterizing defects in crystalline solids is a challenging problem, particularly for lithium-ion intercalation materials, which often exhibit multiple stable oxidation and spin states as well as local ordering of lithium and charges. Here, we reveal the existence of characteristic lithium defect environments in the crystalline lithium-ion battery electrode LiVPO4F and establish the relative subnanometer-scale proximities between them. Well-crystallized LiVPO4F samples were synthesized with the expected tavorite-like structure, as established by X-ray diffraction (XRD) and scanning transmission electron microscopy (STEM) measurements. Solid-state 7Li nuclear magnetic resonance (NMR) spectra reveal unexpected paramagnetic 7Li environments that can account for up to 20% of the total lithium content. Multidimensional and site-selective solid-state 7Li NMR experiments using finite-pulse radio frequency-driven recoupling (fp-RFDR) establish unambiguously that the unexpected lithium environments are associated with defects within the LiVPO4F crystal structure, revealing the existence of dipole–dipole-coupled defect pairs. The lithium defects exhibit local electronic environments that are distinct from lithium ions in the crystallographic LiVPO4F site, which result from altered oxidation and/or spin states of nearby paramagnetic vanadium atoms. The results provide a general strategy for identifying and characterizing lithium defect environments in crystalline solids, including paramagnetic materials with short 7Li NMR relaxation times on the order of milliseconds

    Room-temperature single-phase Li insertion/extraction in nanoscale LixFePO4

    Get PDF
    Classical electrodes for Li-ion technology operate by either single-phase or two-phase Li insertion/de-insertion processes, with single-phase mechanisms presenting some intrinsic advantages with respect to various storage applications. We report the feasibility to drive the well-established two-phase room-temperature insertion process in LiFePO4 electrodes into a single-phase one by modifying the material's particle size and ion ordering. Electrodes made of LiFePO4 nanoparticles (40 nm) formed by a low-temperature precipitation process exhibit sloping voltage charge/discharge curves, characteristic of a single-phase behaviour. The presence of defects and cation vacancies, as deduced by chemical/physical analytical techniques, is crucial in accounting for our results. Whereas the interdependency of particle size, composition and structure complicate the theorists' attempts to model phase stability in nanoscale materials, it provides new opportunities for chemists and electrochemists because numerous electrode materials could exhibit a similar behaviour at the nanoscale once their syntheses have been correctly worked out

    Modelling human choices: MADeM and decision‑making

    Get PDF
    Research supported by FAPESP 2015/50122-0 and DFG-GRTK 1740/2. RP and AR are also part of the Research, Innovation and Dissemination Center for Neuromathematics FAPESP grant (2013/07699-0). RP is supported by a FAPESP scholarship (2013/25667-8). ACR is partially supported by a CNPq fellowship (grant 306251/2014-0)
    corecore