504 research outputs found

    Adolescent Perceptions of Family Connectedness and School Belonging: Links with Self-Concept and Depressive Symptoms among Gifted African American and Hispanic Youth

    Get PDF
    Gifted minority students, particularly those who are African-American or Hispanic, often face significant barriers to their optimal psychosocial functioning and academic achievement. Lack of access to appropriate educational resources, reduced teacher expectations, under-identification and underrepresentation in gifted and talented programs, and outright discrimination all contribute to increased risk and reduced psychosocial and academic functioning among these youth. It is clear from the present results that sources of attachment are important for healthy functioning in gifted African American and Hispanic youth. Given the lack of presence of these students in gifted and talented programs nationwide, and the difficulty in retaining these students once enrolled, researchers and practitioners face increasing need to continue to strengthen the “family-school-community” link in order to enhance resiliency and reduce risk in gifted African American and Hispanic youth

    Effects of driver familiarity and prolonged or intermittent right-side failure on level crossing safety

    Get PDF
    This paper investigates the adverse effects of familiarity and human factors issues associated with the reliability of low-cost warning devices at level crossings. The driving simulator study featured a repetitive, low workload, monotonous driving task in which there were no failures of the level crossing (control) or prolonged or intermittent right-side failures (where the device reverts to a safe failure mode). The results of the experiment provided mixed support for the familiarity hypothesis. Four of the 23 participants collided with the train when it first appeared on trial 10 but safety margins increased from the first train to the next presentation of a train (trial 12). Contrary to expectations, the safety margins decreased with repeated right-side failure only for the intermittent condition. The limited head movement data showed that participants in the prolonged failure condition were more likely to turn their head to check for trains in the right-side failure trials than in earlier trials where there was no signal and no train. Few control participants turned their head to check for trains when no signal was presented. This research highlights the need to consider repetitive tasks and workload in experimental design and accident investigation at railway level crossings

    A new population of recently quenched elliptical galaxies in the SDSS

    Full text link
    We use the Sloan Digital Sky Survey to investigate the properties of massive elliptical galaxies in the local Universe (z\leq0.08) that have unusually blue optical colors. Through careful inspection, we distinguish elliptical from non-elliptical morphologies among a large sample of similarly blue galaxies with high central light concentrations (c_r\geq2.6). These blue ellipticals comprise 3.7 per cent of all c_r\geq2.6 galaxies with stellar masses between 10^10 and 10^11 h^{-2} {\rm M}_{\sun}. Using published fiber spectra diagnostics, we identify a unique subset of 172 non-star-forming ellipticals with distinctly blue urz colors and young (< 3 Gyr) light-weighted stellar ages. These recently quenched ellipticals (RQEs) have a number density of 2.7-4.7\times 10^{-5}\,h^3\,{\rm Mpc}^{-3} and sufficient numbers above 2.5\times10^{10} h^{-2} {\rm M}_{\sun} to account for more than half of the expected quiescent growth at late cosmic time assuming this phase lasts 0.5 Gyr. RQEs have properties that are consistent with a recent merger origin (i.e., they are strong `first-generation' elliptical candidates), yet few involved a starburst strong enough to produce an E+A signature. The preferred environment of RQEs (90 per cent reside at the centers of < 3\times 10^{12}\,h^{-1}{\rm M}_{\sun} groups) agrees well with the `small group scale' predicted for maximally efficient spiral merging onto their halo center and rules out satellite-specific quenching processes. The high incidence of Seyfert and LINER activity in RQEs and their plausible descendents may heat the atmospheres of small host halos sufficiently to maintain quenching.Comment: 26 pages, 9 figures. Revised version; accepted for publication in MNRA

    Regional and global contributions of air pollution to risk of death from COVID-19.

    Get PDF
    AIMS: The risk of mortality from the coronavirus disease that emerged in 2019 (COVID-19) is increased by comorbidity from cardiovascular and pulmonary diseases. Air pollution also causes excess mortality from these conditions. Analysis of the first severe acute respiratory syndrome coronavirus (SARS-CoV-1) outcomes in 2003, and preliminary investigations of those for SARS-CoV-2 since 2019, provide evidence that the incidence and severity are related to ambient air pollution. We estimated the fraction of COVID-19 mortality that is attributable to the long-term exposure to ambient fine particulate air pollution. METHODS AND RESULTS: We characterized global exposure to fine particulates based on satellite data, and calculated the anthropogenic fraction with an atmospheric chemistry model. The degree to which air pollution influences COVID-19 mortality was derived from epidemiological data in the USA and China. We estimate that particulate air pollution contributed ∼15% (95% confidence interval 7-33%) to COVID-19 mortality worldwide, 27% (13 - 46%) in East Asia, 19% (8-41%) in Europe, and 17% (6-39%) in North America. Globally, ∼50-60% of the attributable, anthropogenic fraction is related to fossil fuel use, up to 70-80% in Europe, West Asia, and North America. CONCLUSION: Our results suggest that air pollution is an important cofactor increasing the risk of mortality from COVID-19. This provides extra motivation for combining ambitious policies to reduce air pollution with measures to control the transmission of COVID-19
    corecore