14 research outputs found

    Biological effects of carbon black nanoparticles are changed by surface coating with polycyclic aromatic hydrocarbons

    Get PDF
    BACKGROUND: Carbon black nanoparticles (CBNP) are mainly composed of carbon, with a small amount of other elements (including hydrogen and oxygen). The toxicity of CBNP has been attributed to their large surface area, and through adsorbing intrinsically toxic substances, such as polycyclic aromatic hydrocarbons (PAH). It is not clear whether a PAH surface coating changes the toxicological properties of CBNP by influencing their physicochemical properties, through the specific toxicity of the surface-bound PAH, or by a combination of both. METHODS: Printex(R)90 (P90) was used as CBNP; the comparators were P90 coated with either benzo[a]pyrene (BaP) or 9-nitroanthracene (9NA), and soot from acetylene combustion that bears various PAHs on the surface (AS-PAH). Oxidative stress and IL-8/KC mRNA expression were determined in A549 and bronchial epithelial cells (16HBE14o-, Calu-3), mouse intrapulmonary airways and tracheal epithelial cells. Overall toxicity was tested in a rat inhalation study according to Organization for Economic Co-operation and Development (OECD) criteria. Effects on cytochrome monooxygenase (Cyp) mRNA expression, cell viability and mucociliary clearance were determined in acute exposure models using explanted murine trachea. RESULTS: All particles had similar primary particle size, shape, hydrodynamic diameter and zeta-potential. All PAH-containing particles had a comparable specific surface area that was approximately one third that of P90. AS-PAH contained a mixture of PAH with expected higher toxicity than BaP or 9NA. PAH-coating reduced some effects of P90 such as IL-8 mRNA expression and oxidative stress in A549 cells, granulocyte influx in the in vivo OECD experiment, and agglomeration of P90 and mucus release in the murine trachea ex vivo. Furthermore, P90-BaP decreased particle transport speed compared to P90 at 10 mug/ml. In contrast, PAH-coating induced IL-8 mRNA expression in bronchial epithelial cell lines, and Cyp mRNA expression and apoptosis in tracheal epithelial cells. In line with the higher toxicity compared to P90-BaP and P90-9NA, AS-PAH had the strongest biological effects both ex vivo and in vivo. CONCLUSIONS: Our results demonstrate that the biological effect of CBNP is determined by a combination of specific surface area and surface-bound PAH, and varies in different target cells

    Π—Π°Π΄Π°Ρ‡Π° Ρ€ΠΎΠ·Ρ€Π°Ρ…ΡƒΠ½ΠΊΡƒ відхилСння ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½Ρ– Ρ‚ΠΊΠ°Π½ΠΈΠ½ΠΈ для Π±Π΅Π·ΠΊΠΎΠ½Ρ‚Π°ΠΊΡ‚Π½ΠΎΡ— фотоакустичної Ρ‚ΠΎΠΌΠΎΠ³Ρ€Π°Ρ„Ρ–Ρ—

    No full text
    Background. Photoacoustic tomography (PAT) is a relatively new imaging modality,which allows e.g. visualizing the vascular network in biological tissue noninvasively. This tomographic method has an advantage in comparison to pure optical/acoustical methods due to high optical contrast and low acoustic scattering in deep tissue. The common PAT methodology, based on measurements of the acoustic pressure by piezoelectric sensors placed on the tissue surface, limits its practical versatility. A novel, completely non-contact and full-field PAT system is described. In noncontact PAT the measurement of surface displacement induced by the acoustic pressure at the tissue/air border is researched.Objective. To solve a simulation problem of the displacement calculation based on the medium pressure, which consists in deriving a formula for recalculating the pressure in the surface displacement based on the momentum conservation law, developing a simulation technique, and comparing the error of the proposed technique with the earlier used one.Methods. Comparing the experimental data with simulated pressure data in the k-Wave toolbox. The criterion of comparison is the relative quadratic error.Results. The simulation results of the displacement based on a new approach are more consistent with the experimental data than previous. The quadratic error numerical value of the new approach is 18 % and the previous is 71 %.Conclusions. The theoretical features of the surface displacement simulation are investigated and the solution of this problem is proposed based on momentum conservation law. The implementation of the proposed methodology has a four times smaller simulation error compared to the previous technique, so it can be implemented in the non-contact PAT. The residual error can be caused by the properties of the tissue, which are not taken into account in the model, which requires further research.ΠŸΡ€ΠΎΠ±Π»Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ°. ЀотоакустичСская томография (Π€AT) являСтся ΠΎΡ‚Π½ΠΎΡΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ Π½ΠΎΠ²Ρ‹ΠΌ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ диагностики, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΉ позволяСт ΠΏΠΎΠ»ΡƒΡ‡ΠΈΡ‚ΡŒ ΠΈΠ·ΠΎΠ±Ρ€Π°ΠΆΠ΅Π½ΠΈΠ΅ сСтки сосудов биологичСской Ρ‚ΠΊΠ°Π½ΠΈ Π½Π΅ΠΈΠ½Π²Π°Π·ΠΈΠ²Π½ΠΎ. Π­Ρ‚ΠΎΡ‚ томографичСский ΠΌΠ΅Ρ‚ΠΎΠ΄ ΠΈΠΌΠ΅Π΅Ρ‚ прСимущСство Π½Π°Π΄ Π΄Ρ€ΡƒΠ³ΠΈΠΌΠΈ сугубо оптичСскими/акустичСскими ΠΌΠ΅Ρ‚ΠΎΠ΄Π°ΠΌΠΈ благодаря Π±ΠΎΠ»ΡŒΡˆΠΎΠΌΡƒ оптичСскому контрасту ΠΈ Π½ΠΈΠ·ΠΊΠΈΠΌ потСрям энСргии Π² тканях. ΠžΠ±Ρ‰Π΅ΠΈΠ·Π²Π΅ΡΡ‚Π½Π°Ρ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈΠΊΠ° ЀАВ, которая основываСтся Π½Π° измСрСниях акустичСского давлСния ΠΏΡŒΠ΅Π·ΠΎΡΠ»Π΅ΠΊΡ‚Ρ€ΠΈΡ‡Π΅ΡΠΊΠΈΠΌΠΈ Π΄Π°Ρ‚Ρ‡ΠΈΠΊΠ°ΠΌΠΈ, Ρ€Π°Π·ΠΌΠ΅Ρ‰Π΅Π½Π½Ρ‹ΠΌΠΈ Π½Π° повСрхности Ρ‚ΠΊΠ°Π½ΠΈ, ΠΈΠΌΠ΅Π΅Ρ‚ ΠΎΠ³Ρ€Π°Π½ΠΈΡ‡Π΅Π½Π½ΠΎΠ΅ практичСскоС ΠΏΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅. Π’ ΡΡ‚Π°Ρ‚ΡŒΠ΅ описана новая, ΠΏΠΎΠ»Π½ΠΎΡΡ‚ΡŒΡŽ бСсконтактная Π€AT-систСма с ΠΏΠΎΠ»Π½Ρ‹ΠΌ Π²ΠΎΠ·Π±ΡƒΠΆΠ΄Π΅Π½ΠΈΠ΅ΠΌ. ИсслСдовано основноС ΠΎΡ‚Π»ΠΈΡ‡ΠΈΠ΅ бСсконтактной ЀАВ, ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ΅ состоит Π² ΠΈΠ·ΠΌΠ΅Ρ€Π΅Π½ΠΈΠΈ ΠΎΡ‚ΠΊΠ»ΠΎΠ½Π΅Π½ΠΈΠΉ повСрхности Ρ‚ΠΊΠ°Π½ΠΈ, Π²Ρ‹Π·Π²Π°Π½Π½Ρ‹Ρ… акустичСским Π΄Π°Π²Π»Π΅Π½ΠΈΠ΅ΠΌ Π½Π° Π³Ρ€Π°Π½ΠΈΡ†Π΅ Ρ‚ΠΊΠ°Π½ΡŒβ€“Π²ΠΎΠ·Π΄ΡƒΡ….ЦСль исслСдования. Π Π΅ΡˆΠΈΡ‚ΡŒ Π·Π°Π΄Π°Ρ‡Ρƒ модСлирования отклонСния повСрхности Π½Π° основС давлСния Π²Π½ΡƒΡ‚Ρ€ΠΈ срСды, которая состоит Π² Π²Ρ‹Π²ΠΎΠ΄Π΅ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ для пСрСсчСта давлСния Π² ΠΎΡ‚ΠΊΠ»ΠΎΠ½Π΅Π½ΠΈΠ΅ повСрхности Π½Π° основС Π·Π°ΠΊΠΎΠ½Π° сохранСния ΠΈΠΌΠΏΡƒΠ»ΡŒΡΠ°, Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚ΠΊΠ΅ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈΠΊΠΈ модСлирования ΠΈ сравнСния ошибки ΠΏΡ€Π΅Π΄Π»ΠΎΠΆΠ΅Π½Π½ΠΎΠΉ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈΠΊΠΈ с Ρ€Π°Π½Π½Π΅Π΅ использованной.ΠœΠ΅Ρ‚ΠΎΠ΄ΠΈΠΊΠ° Ρ€Π΅Π°Π»ΠΈΠ·Π°Ρ†ΠΈΠΈ. Π­ΠΊΡΠΏΠ΅Ρ€ΠΈΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½Ρ‹Π΅ Π΄Π°Π½Π½Ρ‹Π΅ ΡΡ€Π°Π²Π½ΠΈΠ²Π°ΡŽΡ‚ΡΡ с ΠΏΡ€ΠΎΠΌΠΎΠ΄Π΅Π»ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹ΠΌ ΠΎΡ‚ΠΊΠ»ΠΎΠ½Π΅Π½ΠΈΠ΅ΠΌ повСрхности Π² ΠΏΡ€ΠΎΠ³Ρ€Π°ΠΌΠΌΠ΅ k-Wave toolbox. ΠšΡ€ΠΈΡ‚Π΅Ρ€ΠΈΠΉ сравнСния – ΠΎΡ‚Π½ΠΎΡΠΈΡ‚Π΅Π»ΡŒΠ½Π°Ρ квадратичСская ошибка.Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ исслСдования. ΠŸΡ€ΠΎΠΌΠΎΠ΄Π΅Π»ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹Π΅ Π΄Π°Π½Π½Ρ‹Π΅ отклонСния повСрхности Π½Π° основС Π½ΠΎΠ²ΠΎΠΉ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈΠΊΠΈ большС ΡΠΎΠΎΡ‚Π²Π΅Ρ‚ΡΡ‚Π²ΡƒΡŽΡ‚ экспСримСнту Π² сравнСнии с ΠΏΡ€Π΅Π΄Ρ‹Π΄ΡƒΡ‰Π΅ΠΉ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈΠΊΠΎΠΉ. ΠšΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π΅ΡΠΊΠ°Ρ ошибка Π½ΠΎΠ²ΠΎΠΉ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈΠΊΠΈ составляСт 18 %, ΠΏΡ€Π΅Π΄Ρ‹Π΄ΡƒΡ‰Π΅ΠΉ – 71 %.Π’Ρ‹Π²ΠΎΠ΄Ρ‹. Π’ Ρ€Π°Π±ΠΎΡ‚Π΅ исслСдованы тСорСтичСскиС особСнности модСлирования отклонСния повСрхности ΠΈ ΠΏΡ€Π΅Π΄Π»ΠΎΠΆΠ΅Π½ΠΎ Ρ€Π΅ΡˆΠ΅Π½ΠΈΠ΅ этой Π·Π°Π΄Π°Ρ‡ΠΈ Π½Π° основании Π·Π°ΠΊΠΎΠ½Π° сохранСния ΠΈΠΌΠΏΡƒΠ»ΡŒΡΠ°. РСализация ΠΏΡ€Π΅Π΄Π»ΠΎΠΆΠ΅Π½Π½ΠΎΠΉ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈΠΊΠΈ ΠΈΠΌΠ΅Π΅Ρ‚ Π² Ρ‡Π΅Ρ‚Ρ‹Ρ€Π΅ Ρ€Π°Π·Π° ΠΌΠ΅Π½ΡŒΡˆΡƒΡŽ ΠΎΡˆΠΈΠ±ΠΊΡƒ модСлирования отклонСния Π² сравнСнии с ΠΏΡ€Π΅Π΄Ρ‹Π΄ΡƒΡ‰Π΅ΠΉ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈΠΊΠΎΠΉ, поэтому ΠΎΠ½Π° ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ Ρ€Π΅Π°Π»ΠΈΠ·ΠΎΠ²Π°Π½Π° Π² бСсконтактной ЀАВ. ΠžΡΡ‚Π°Ρ‚ΠΎΡ‡Π½Π°Ρ ошибка ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ обусловлСна свойствами Ρ‚ΠΊΠ°Π½ΠΈ, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ Π½Π΅ ΡƒΡ‡Ρ‚Π΅Π½Ρ‹ Π² ΠΌΠΎΠ΄Π΅Π»ΠΈ, Ρ‡Ρ‚ΠΎ Ρ‚Ρ€Π΅Π±ΡƒΠ΅Ρ‚ Π΄Π°Π»ΡŒΠ½Π΅ΠΉΡˆΠΈΡ… исслСдований.ΠŸΡ€ΠΎΠ±Π»Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ°. Ѐотоакустична томографія (Π€AT) Ρ” відносно Π½ΠΎΠ²ΠΈΠΌ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ діагностики, який Π΄Π°Ρ” Π·ΠΌΠΎΠ³Ρƒ ΠΎΡ‚Ρ€ΠΈΠΌΠ°Ρ‚ΠΈ зобраТСння ΠΌΠ΅Ρ€Π΅ΠΆΡ– судин Π±Ρ–ΠΎΠ»ΠΎΠ³Ρ–Ρ‡Π½ΠΎΡ— Ρ‚ΠΊΠ°Π½ΠΈΠ½ΠΈ Π½Π΅Ρ–Π½Π²Π°Π·ΠΈΠ²Π½ΠΎ. Π¦Π΅ΠΉ Ρ‚ΠΎΠΌΠΎΠ³Ρ€Π°Ρ„Ρ–Ρ‡Π½ΠΈΠΉ ΠΌΠ΅Ρ‚ΠΎΠ΄ ΠΌΠ°Ρ” ΠΏΠ΅Ρ€Π΅Π²Π°Π³Ρƒ Π½Π°Π΄ Ρ–Π½ΡˆΠΈΠΌΠΈ суто ΠΎΠΏΡ‚ΠΈΡ‡Π½ΠΈΠΌΠΈ/акус­тичними ΠΌΠ΅Ρ‚ΠΎΠ΄Π°ΠΌΠΈ завдяки Π²Π΅Π»ΠΈΠΊΠΎΠΌΡƒ ΠΎΠΏΡ‚ΠΈΡ‡Π½ΠΎΠΌΡƒ контрасту Ρ– низьким Π²Ρ‚Ρ€Π°Ρ‚Π°ΠΌ Π΅Π½Π΅Ρ€Π³Ρ–Ρ— Π² Ρ‚ΠΊΠ°Π½ΠΈΠ½Π°Ρ…. Π—Π°Π³Π°Π»ΡŒΠ½ΠΎΠ²Ρ–Π΄ΠΎΠΌΠ° ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈΠΊΠ° ЀАВ, Ρ‰ΠΎ Π±Π°Π·ΡƒΡ”Ρ‚ΡŒΡΡ Π½Π° Π²ΠΈΠΌΡ–Ρ€ΡŽΠ²Π°Π½Π½ΡΡ… акустичного тиску п’єзоСлСктричними Π΄Π°Ρ‚Ρ‡ΠΈΠΊΠ°ΠΌΠΈ, Ρ€ΠΎΠ·ΠΌΡ–Ρ‰Π΅Π½ΠΈΠΌΠΈ Π½Π° ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½Ρ– Ρ‚ΠΊΠ°Π½ΠΈΠ½ΠΈ, ΠΌΠ°Ρ” ΠΎΠ±ΠΌΠ΅ΠΆΠ΅Π½Π΅ ΠΏΡ€Π°ΠΊΡ‚ΠΈΡ‡Π½Π΅ використання. Π£ статті описана Π½ΠΎΠ²Π°, ΠΏΠΎΠ²Π½Ρ–ΡΡ‚ΡŽ Π±Π΅Π·ΠΊΠΎΠ½Ρ‚Π°ΠΊΡ‚Π½Π° Π€AT-систСма Π· ΠΏΠΎΠ²Π½ΠΈΠΌ збудТСнням. ДослідТСно основну Π²Ρ–Π΄ΠΌΡ–Π½Π½Ρ–ΡΡ‚ΡŒ Π±Π΅Π·ΠΊΠΎΠ½Ρ‚Π°ΠΊΡ‚Π½ΠΎΡ— ЀАВ, Ρ‰ΠΎ полягає Ρƒ Π²ΠΈΠΌΡ–Ρ€ΡŽΠ²Π°Π½Π½Ρ– Π²Ρ–Π΄Ρ…ΠΈΠ»Π΅Π½ΡŒ ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½Ρ– Ρ‚ΠΊΠ°Π½ΠΈΠ½ΠΈ, спричинСних акустичним тиском Π½Π° ΠΌΠ΅ΠΆΡ– тканина–повітря.ΠœΠ΅Ρ‚Π° дослідТСння. Розв’язати Π·Π°Π΄Π°Ρ‡Ρƒ модСлювання відхилСння ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½Ρ– Π½Π° основі тиску всСрСдині сСрСдовища, Ρ‰ΠΎ полягає Ρƒ Π²ΠΈΠ²Π΅Π΄Π΅Π½Π½Ρ– Ρ„ΠΎΡ€ΠΌΡƒΠ»ΠΈ для ΠΏΠ΅Ρ€Π΅Ρ€Π°Ρ…ΡƒΠ½ΠΊΡƒ тиску Π² відхилСння ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½Ρ– Π½Π° основі Π·Π°ΠΊΠΎΠ½Ρƒ збСрСТСння Ρ–ΠΌΠΏΡƒΠ»ΡŒΡΡƒ, Ρ€ΠΎΠ·Ρ€ΠΎΠ±Ρ†Ρ– ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈΠΊΠΈ модСлювання Ρ– порівняння ΠΏΠΎΠΌΠΈΠ»ΠΊΠΈ Π·Π°ΠΏΡ€ΠΎΠΏΠΎΠ½ΠΎΠ²Π°Π½ΠΎΡ— ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈΠΊΠΈ Π· Ρ€Π°Π½Ρ–ΡˆΠ΅ Π²ΠΈΠΊΠΎΡ€ΠΈΡΡ‚ΠΎΠ²ΡƒΠ²Π°Π½ΠΎΡŽ.ΠœΠ΅Ρ‚ΠΎΠ΄ΠΈΠΊΠ° Ρ€Π΅Π°Π»Ρ–Π·Π°Ρ†Ρ–Ρ—. Π•ΠΊΡΠΏΠ΅Ρ€ΠΈΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½Ρ– Π΄Π°Π½Ρ– ΠΏΠΎΡ€Ρ–Π²Π½ΡŽΡŽΡ‚ΡŒΡΡ Π· ΠΏΡ€ΠΎΠΌΠΎΠ΄Π΅Π»ΡŒΠΎΠ²Π°Π½ΠΈΠΌ відхилСнням ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½Ρ– Π² ΠΏΡ€ΠΎΠ³Ρ€Π°ΠΌΡ– k-Wave toolbox. ΠšΡ€ΠΈΡ‚Π΅Ρ€Ρ–ΠΉ порівняння – відносна ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½Π° ΠΏΠΎΠΌΠΈΠ»ΠΊΠ°.Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ΠΈ дослідТСння. ΠŸΡ€ΠΎΠΌΠΎΠ΄Π΅Π»ΡŒΠΎΠ²Π°Π½Ρ– Π΄Π°Π½Ρ– відхилСння ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½Ρ– Π½Π° основі Π½ΠΎΠ²ΠΎΡ— ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈΠΊΠΈ Π±Ρ–Π»ΡŒΡˆΠ΅ Π²Ρ–Π΄ΠΏΠΎΠ²Ρ–Π΄Π°ΡŽΡ‚ΡŒ СкспСримСнту порівняно Π· ΠΏΠΎΠΏΠ΅Ρ€Π΅Π΄Π½ΡŒΠΎΡŽ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈΠΊΠΎΡŽ. ΠšΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½Π° ΠΏΠΎΠΌΠΈΠ»ΠΊΠ° Π½ΠΎΠ²ΠΎΡ— ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈΠΊΠΈ ΡΡ‚Π°Π½ΠΎΠ²ΠΈΡ‚ΡŒ 18 %, ΠΏΠΎΠΏΠ΅Ρ€Π΅Π΄Π½ΡŒΠΎΡ— – 71 %.Висновки. Π£ Ρ€ΠΎΠ±ΠΎΡ‚Ρ– дослідТСно Ρ‚Π΅ΠΎΡ€Π΅Ρ‚ΠΈΡ‡Π½Ρ– особливості модСлювання відхилСння ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½Ρ– Ρ‚Π° Π·Π°ΠΏΡ€ΠΎΠΏΠΎΠ½ΠΎΠ²Π°Π½ΠΎ розв’язання Ρ†Ρ–Ρ”Ρ— Π·Π°Π΄Π°Ρ‡Ρ– Π½Π° основі Π·Π°ΠΊΠΎΠ½Ρƒ збСрСТСння Ρ–ΠΌΠΏΡƒΠ»ΡŒΡΡƒ. РСалізація Π·Π°ΠΏΡ€ΠΎΠΏΠΎΠ½ΠΎΠ²Π°Π½ΠΎΡ— ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈΠΊΠΈ ΠΌΠ°Ρ” Π² Ρ‡ΠΎΡ‚ΠΈΡ€ΠΈ Ρ€Π°Π·ΠΈ ΠΌΠ΅Π½ΡˆΡƒ ΠΏΠΎΠΌΠΈΠ»ΠΊΡƒ модСлювання відхилСння порівняно Π· ΠΏΠΎΠΏΠ΅Ρ€Π΅Π΄Π½ΡŒΠΎΡŽ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈΠΊΠΎΡŽ, Ρ‚ΠΎΠΌΡƒ Π²ΠΎΠ½Π° ΠΌΠΎΠΆΠ΅ Π±ΡƒΡ‚ΠΈ Ρ€Π΅Π°Π»Ρ–Π·ΠΎΠ²Π°Π½Π° Ρƒ Π±Π΅Π·ΠΊΠΎΠ½Ρ‚Π°ΠΊΡ‚Π½Ρ–ΠΉ ЀАВ. Π—Π°Π»ΠΈΡˆΠΊΠΎΠ²Π° ΠΏΠΎΠΌΠΈΠ»ΠΊΠ° ΠΌΠΎΠΆΠ΅ Π±ΡƒΡ‚ΠΈ спричинСна властивостями Ρ‚ΠΊΠ°Π½ΠΈΠ½ΠΈ, які Π½Π΅ Π²Ρ€Π°Ρ…ΠΎΠ²Π°Π½Ρ– Π² ΠΌΠΎΠ΄Π΅Π»Ρ–, Ρ‰ΠΎ ΠΏΠΎΡ‚Ρ€Π΅Π±ΡƒΡ” ΠΏΠΎΠ΄Π°Π»ΡŒΡˆΠΈΡ… Π΄ΠΎΡΠ»Ρ–Π΄ΠΆΠ΅Π½ΡŒ

    Noncontact holographic detection for photoacoustic tomography

    No full text
    A holographic method for high-speed, noncontact photoacoustic tomography is introduced and evaluated. Relative changes of the object's topography, induced by the impact of thermoelastic pressure waves, were determined at nanometer sensitivity without physical contact. The object's surface was illuminated with nanosecond laser pulses and imaged with a high-speed CMOS camera. From two interferograms measured before and after excitation of the acoustic wave, surface displacement was calculated and then used as the basis for a tomographic reconstruction of the initial pressure caused by optical absorption. The holographic detection scheme enables variable sampling rates of the photoacoustic signal of up to 50 MHz. The total acquisition times for complete volumes with 230 MVoxel is far below 1 s. Measurements of silicone and porcine skin tissue phantoms with embedded artificial absorbers, which served as a model for human subcutaneous vascular networks, were possible. Three-dimensional reconstructions of the absorbing structures show details with a diameter of 310 aem up to a depth of 2.5 mm. Theoretical limitations and the experimental sensitivity, as well as the potential for in vivo imaging depending on the detection repetition rate, are analyzed and discussed. (C) 2017 Society of Photo-Optical Instrumentation Engineers (SPIE)

    Recommended guidelines for pain management programmes

    No full text
    Originally published in Optics Express on 07 September 2015 (oe-23-18-23217

    Pre-referral rectal artesunate is no β€œmagic bullet” in weak health systems

    Get PDF
    Abstract Severe malaria is a potentially fatal condition that requires urgent treatment. In a clinical trial, a sub-group of children treated with rectal artesunate (RAS) before being referred to a health facility had an increased chance of survival. We recently published in BMC Medicine results of the CARAMAL Project that did not find the same protective effect of pre-referral RAS implemented at scale under real-world conditions in three African countries. Instead, CARAMAL identified serious health system shortfalls that impacted the entire continuum of care, constraining the effectiveness of RAS. Correspondence to the article criticized the observational study design and the alleged interpretation and consequences of our findings. Here, we clarify that we do not dispute the life-saving potential of RAS, and discuss the methodological criticism. We acknowledge the potential for confounding in observational studies. Nevertheless, the totality of CARAMAL evidence is in full support of our conclusion that the conditions under which RAS can be beneficial were not met in our settings, as children often failed to complete referral and post-referral treatment was inadequate. The criticism did not appear to acknowledge the realities of highly malarious settings documented in detail in the CARAMAL project. Suggesting that trial-demonstrated efficacy is sufficient to warrant large-scale deployment of pre-referral RAS ignores the paramount importance of functioning health systems for its delivery, for completing post-referral treatment, and for achieving complete cure. Presenting RAS as a β€œmagic bullet” distracts from the most urgent priority: fixing health systems so they can provide a functioning continuum of care and save the lives of sick children. The data underlying our publication is freely accessible on Zenodo

    Π—Π°Π΄Π°Ρ‡Π° расчСта отклонСния повСрхности Ρ‚ΠΊΠ°Π½ΠΈ для Π±Π΅Π·ΠΊΠΎΠ½Ρ‚Π°ΠΊΡ‚Π½ΠΎΠΉ фотоакустичСской Ρ‚ΠΎΠΌΠΎΠ³Ρ€Π°Ρ„ΠΈΠΈ

    No full text
    The authors would like to acknowledge the support of EU financed project: AMMODIT (Approximation Methods for Molecular Modelling and Diagnosis Tools) β€” Grant Agreement β„–645672 within HORIZON 2020.ΠŸΡ€ΠΎΠ±Π»Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ°. Ѐотоакустична томографія (Π€AT) Ρ” відносно Π½ΠΎΠ²ΠΈΠΌ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ діагностики, який Π΄Π°Ρ” Π·ΠΌΠΎΠ³Ρƒ ΠΎΡ‚Ρ€ΠΈΠΌΠ°Ρ‚ΠΈ зобраТСння ΠΌΠ΅Ρ€Π΅ΠΆΡ– судин Π±Ρ–ΠΎΠ»ΠΎΠ³Ρ–Ρ‡Π½ΠΎΡ— Ρ‚ΠΊΠ°Π½ΠΈΠ½ΠΈ Π½Π΅Ρ–Π½Π²Π°Π·ΠΈΠ²Π½ΠΎ. Π¦Π΅ΠΉ Ρ‚ΠΎΠΌΠΎΠ³Ρ€Π°Ρ„Ρ–Ρ‡Π½ΠΈΠΉ ΠΌΠ΅Ρ‚ΠΎΠ΄ ΠΌΠ°Ρ” ΠΏΠ΅Ρ€Π΅Π²Π°Π³Ρƒ Π½Π°Π΄ Ρ–Π½ΡˆΠΈΠΌΠΈ суто ΠΎΠΏΡ‚ΠΈΡ‡Π½ΠΈΠΌΠΈ/акустичними ΠΌΠ΅Ρ‚ΠΎΠ΄Π°ΠΌΠΈ завдяки Π²Π΅Π»ΠΈΠΊΠΎΠΌΡƒ ΠΎΠΏΡ‚ΠΈΡ‡Π½ΠΎΠΌΡƒ контрасту Ρ– низьким Π²Ρ‚Ρ€Π°Ρ‚Π°ΠΌ Π΅Π½Π΅Ρ€Π³Ρ–Ρ— Π² Ρ‚ΠΊΠ°Π½ΠΈΠ½Π°Ρ…. Π—Π°Π³Π°Π»ΡŒΠ½ΠΎΠ²Ρ–Π΄ΠΎΠΌΠ° ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈΠΊΠ° ЀАВ, Ρ‰ΠΎ Π±Π°Π·ΡƒΡ”Ρ‚ΡŒΡΡ Π½Π° Π²ΠΈΠΌΡ–Ρ€ΡŽΠ²Π°Π½Π½ΡΡ… акустичного тиску п’єзоСлСктричними Π΄Π°Ρ‚Ρ‡ΠΈΠΊΠ°ΠΌΠΈ, Ρ€ΠΎΠ·ΠΌΡ–Ρ‰Π΅Π½ΠΈΠΌΠΈ Π½Π° ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½Ρ– Ρ‚ΠΊΠ°Π½ΠΈΠ½ΠΈ, ΠΌΠ°Ρ” ΠΎΠ±ΠΌΠ΅ΠΆΠ΅Π½Π΅ ΠΏΡ€Π°ΠΊΡ‚ΠΈΡ‡Π½Π΅ використання. Π£ статті описана Π½ΠΎΠ²Π°, ΠΏΠΎΠ²Π½Ρ–ΡΡ‚ΡŽ Π±Π΅Π·ΠΊΠΎΠ½Ρ‚Π°ΠΊΡ‚Π½Π° Π€AT-систСма Π· ΠΏΠΎΠ²Π½ΠΈΠΌ збудТСнням. ДослідТСно основну Π²Ρ–Π΄ΠΌΡ–Π½Π½Ρ–ΡΡ‚ΡŒ Π±Π΅Π·ΠΊΠΎΠ½Ρ‚Π°ΠΊΡ‚Π½ΠΎΡ— ЀАВ, Ρ‰ΠΎ полягає Ρƒ Π²ΠΈΠΌΡ–Ρ€ΡŽΠ²Π°Π½Π½Ρ– Π²Ρ–Π΄Ρ…ΠΈΠ»Π΅Π½ΡŒ ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½Ρ– Ρ‚ΠΊΠ°Π½ΠΈΠ½ΠΈ, спричинСних акустичним тиском Π½Π° ΠΌΠ΅ΠΆΡ– тканина–повітря. ΠœΠ΅Ρ‚Π° дослідТСння. Розв’язати Π·Π°Π΄Π°Ρ‡Ρƒ модСлювання відхилСння ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½Ρ– Π½Π° основі тиску всСрСдині сСрСдовища, Ρ‰ΠΎ полягає Ρƒ Π²ΠΈΠ²Π΅Π΄Π΅Π½Π½Ρ– Ρ„ΠΎΡ€ΠΌΡƒΠ»ΠΈ для ΠΏΠ΅Ρ€Π΅Ρ€Π°Ρ…ΡƒΠ½ΠΊΡƒ тиску Π² відхилСння ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½Ρ– Π½Π° основі Π·Π°ΠΊΠΎΠ½Ρƒ збСрСТСння Ρ–ΠΌΠΏΡƒΠ»ΡŒΡΡƒ, Ρ€ΠΎΠ·Ρ€ΠΎΠ±Ρ†Ρ– ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈΠΊΠΈ модСлювання Ρ– порівняння ΠΏΠΎΠΌΠΈΠ»ΠΊΠΈ Π·Π°ΠΏΡ€ΠΎΠΏΠΎΠ½ΠΎΠ²Π°Π½ΠΎΡ— ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈΠΊΠΈ Π· Ρ€Π°Π½Ρ–ΡˆΠ΅ Π²ΠΈΠΊΠΎΡ€ΠΈΡΡ‚ΠΎΠ²ΡƒΠ²Π°Π½ΠΎΡŽ. ΠœΠ΅Ρ‚ΠΎΠ΄ΠΈΠΊΠ° Ρ€Π΅Π°Π»Ρ–Π·Π°Ρ†Ρ–Ρ—. Π•ΠΊΡΠΏΠ΅Ρ€ΠΈΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½Ρ– Π΄Π°Π½Ρ– ΠΏΠΎΡ€Ρ–Π²Π½ΡŽΡŽΡ‚ΡŒΡΡ Π· ΠΏΡ€ΠΎΠΌΠΎΠ΄Π΅Π»ΡŒΠΎΠ²Π°Π½ΠΈΠΌ відхилСнням ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½Ρ– Π² ΠΏΡ€ΠΎΠ³Ρ€Π°ΠΌΡ– k-Wave toolbox. ΠšΡ€ΠΈΡ‚Π΅Ρ€Ρ–ΠΉ порівняння – відносна ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½Π° ΠΏΠΎΠΌΠΈΠ»ΠΊΠ°. Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ΠΈ дослідТСння. ΠŸΡ€ΠΎΠΌΠΎΠ΄Π΅Π»ΡŒΠΎΠ²Π°Π½Ρ– Π΄Π°Π½Ρ– відхилСння ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½Ρ– Π½Π° основі Π½ΠΎΠ²ΠΎΡ— ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈΠΊΠΈ Π±Ρ–Π»ΡŒΡˆΠ΅ Π²Ρ–Π΄ΠΏΠΎΠ²Ρ–Π΄Π°ΡŽΡ‚ΡŒ СкспСримСнту порівняно Π· ΠΏΠΎΠΏΠ΅Ρ€Π΅Π΄Π½ΡŒΠΎΡŽ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈΠΊΠΎΡŽ. ΠšΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½Π° ΠΏΠΎΠΌΠΈΠ»ΠΊΠ° Π½ΠΎΠ²ΠΎΡ— ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈΠΊΠΈ ΡΡ‚Π°Π½ΠΎΠ²ΠΈΡ‚ΡŒ 18 %, ΠΏΠΎΠΏΠ΅Ρ€Π΅Π΄Π½ΡŒΠΎΡ— – 71 %. Висновки. Π£ Ρ€ΠΎΠ±ΠΎΡ‚Ρ– дослідТСно Ρ‚Π΅ΠΎΡ€Π΅Ρ‚ΠΈΡ‡Π½Ρ– особливості модСлювання відхилСння ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½Ρ– Ρ‚Π° Π·Π°ΠΏΡ€ΠΎΠΏΠΎΠ½ΠΎΠ²Π°Π½ΠΎ розв’язання Ρ†Ρ–Ρ”Ρ— Π·Π°Π΄Π°Ρ‡Ρ– Π½Π° основі Π·Π°ΠΊΠΎΠ½Ρƒ збСрСТСння Ρ–ΠΌΠΏΡƒΠ»ΡŒΡΡƒ. РСалізація Π·Π°ΠΏΡ€ΠΎΠΏΠΎΠ½ΠΎΠ²Π°Π½ΠΎΡ— ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈΠΊΠΈ ΠΌΠ°Ρ” Π² Ρ‡ΠΎΡ‚ΠΈΡ€ΠΈ Ρ€Π°Π·ΠΈ ΠΌΠ΅Π½ΡˆΡƒ ΠΏΠΎΠΌΠΈΠ»ΠΊΡƒ модСлювання відхилСння порівняно Π· ΠΏΠΎΠΏΠ΅Ρ€Π΅Π΄Π½ΡŒΠΎΡŽ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈΠΊΠΎΡŽ, Ρ‚ΠΎΠΌΡƒ Π²ΠΎΠ½Π° ΠΌΠΎΠΆΠ΅ Π±ΡƒΡ‚ΠΈ Ρ€Π΅Π°Π»Ρ–Π·ΠΎΠ²Π°Π½Π° Ρƒ Π±Π΅Π·ΠΊΠΎΠ½Ρ‚Π°ΠΊΡ‚Π½Ρ–ΠΉ ЀАВ. Π—Π°Π»ΠΈΡˆΠΊΠΎΠ²Π° ΠΏΠΎΠΌΠΈΠ»ΠΊΠ° ΠΌΠΎΠΆΠ΅ Π±ΡƒΡ‚ΠΈ спричинСна властивостями Ρ‚ΠΊΠ°Π½ΠΈΠ½ΠΈ, які Π½Π΅ Π²Ρ€Π°Ρ…ΠΎΠ²Π°Π½Ρ– Π² ΠΌΠΎΠ΄Π΅Π»Ρ–, Ρ‰ΠΎ ΠΏΠΎΡ‚Ρ€Π΅Π±ΡƒΡ” ΠΏΠΎΠ΄Π°Π»ΡŒΡˆΠΈΡ… Π΄ΠΎΡΠ»Ρ–Π΄ΠΆΠ΅Π½ΡŒ.Background. Photoacoustic tomography (PAT) is a relatively new imaging modality,which allows e.g. visualizing the vascular network in biological tissue noninvasively. This tomographic method has an advantage in comparison to pure optical/acoustical methods due to high optical contrast and low acoustic scattering in deep tissue. The common PAT methodology, based on measurements of the acoustic pressure by piezoelectric sensors placed on the tissue surface, limits its practical versatility. A novel, completely non-contact and full-field PAT system is described. In noncontact PAT the measurement of surface displacement induced by the acoustic pressure at the tissue/air border is researched. Objective. To solve a simulation problem of the displacement calculation based on the medium pressure, which consists in deriving a formula for recalculating the pressure in the surface displacement based on the momentum conservation law, developing a simulation technique, and comparing the error of the proposed technique with the earlier used one. Methods. Comparing the experimental data with simulated pressure data in the k-Wave toolbox. The criterion of comparison is the relative quadratic error. Results. The simulation results of the displacement based on a new approach are more consistent with the experimental data than previous. The quadratic error numerical value of the new approach is 18 % and the previous is 71 %. Conclusions. The theoretical features of the surface displacement simulation are investigated and the solution of this problem is proposed based on momentum conservation law. The implementation of the proposed methodology has a four times smaller simulation error compared to the previous technique, so it can be implemented in the non-contact PAT. The residual error can be caused by the properties of the tissue, which are not taken into account in the model, which requires further research.ΠŸΡ€ΠΎΠ±Π»Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ°. ЀотоакустичСская томография (Π€AT) являСтся ΠΎΡ‚Π½ΠΎΡΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ Π½ΠΎΠ²Ρ‹ΠΌ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ диагностики, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΉ позволяСт ΠΏΠΎΠ»ΡƒΡ‡ΠΈΡ‚ΡŒ ΠΈΠ·ΠΎΠ±Ρ€Π°ΠΆΠ΅Π½ΠΈΠ΅ сСтки сосудов биологичСской Ρ‚ΠΊΠ°Π½ΠΈ Π½Π΅ΠΈΠ½Π²Π°Π·ΠΈΠ²Π½ΠΎ. Π­Ρ‚ΠΎΡ‚ томографичСский ΠΌΠ΅Ρ‚ΠΎΠ΄ ΠΈΠΌΠ΅Π΅Ρ‚ прСимущСство Π½Π°Π΄ Π΄Ρ€ΡƒΠ³ΠΈΠΌΠΈ сугубо оптичСскими/акустичСскими ΠΌΠ΅Ρ‚ΠΎΠ΄Π°ΠΌΠΈ благодаря Π±ΠΎΠ»ΡŒΡˆΠΎΠΌΡƒ оптичСскому контрасту ΠΈ Π½ΠΈΠ·ΠΊΠΈΠΌ потСрям энСргии Π² тканях. ΠžΠ±Ρ‰Π΅ΠΈΠ·Π²Π΅ΡΡ‚Π½Π°Ρ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈΠΊΠ° ЀАВ, которая основываСтся Π½Π° измСрСниях акустичСского давлСния ΠΏΡŒΠ΅Π·ΠΎΡΠ»Π΅ΠΊΡ‚Ρ€ΠΈΡ‡Π΅ΡΠΊΠΈΠΌΠΈ Π΄Π°Ρ‚Ρ‡ΠΈΠΊΠ°ΠΌΠΈ, Ρ€Π°Π·ΠΌΠ΅Ρ‰Π΅Π½Π½Ρ‹ΠΌΠΈ Π½Π° повСрхности Ρ‚ΠΊΠ°Π½ΠΈ, ΠΈΠΌΠ΅Π΅Ρ‚ ΠΎΠ³Ρ€Π°Π½ΠΈΡ‡Π΅Π½Π½ΠΎΠ΅ практичСскоС ΠΏΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅. Π’ ΡΡ‚Π°Ρ‚ΡŒΠ΅ описана новая, ΠΏΠΎΠ»Π½ΠΎΡΡ‚ΡŒΡŽ бСсконтактная Π€AT-систСма с ΠΏΠΎΠ»Π½Ρ‹ΠΌ Π²ΠΎΠ·Π±ΡƒΠΆΠ΄Π΅Π½ΠΈΠ΅ΠΌ. ИсслСдовано основноС ΠΎΡ‚Π»ΠΈΡ‡ΠΈΠ΅ бСсконтактной ЀАВ, ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ΅ состоит Π² ΠΈΠ·ΠΌΠ΅Ρ€Π΅Π½ΠΈΠΈ ΠΎΡ‚ΠΊΠ»ΠΎΠ½Π΅Π½ΠΈΠΉ повСрхности Ρ‚ΠΊΠ°Π½ΠΈ, Π²Ρ‹Π·Π²Π°Π½Π½Ρ‹Ρ… акустичСским Π΄Π°Π²Π»Π΅Π½ΠΈΠ΅ΠΌ Π½Π° Π³Ρ€Π°Π½ΠΈΡ†Π΅ Ρ‚ΠΊΠ°Π½ΡŒβ€“Π²ΠΎΠ·Π΄ΡƒΡ…. ЦСль исслСдования. Π Π΅ΡˆΠΈΡ‚ΡŒ Π·Π°Π΄Π°Ρ‡Ρƒ модСлирования отклонСния повСрхности Π½Π° основС давлСния Π²Π½ΡƒΡ‚Ρ€ΠΈ срСды, которая состоит Π² Π²Ρ‹Π²ΠΎΠ΄Π΅ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ для пСрСсчСта давлСния Π² ΠΎΡ‚ΠΊΠ»ΠΎΠ½Π΅Π½ΠΈΠ΅ повСрхности Π½Π° основС Π·Π°ΠΊΠΎΠ½Π° сохранСния ΠΈΠΌΠΏΡƒΠ»ΡŒΡΠ°, Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚ΠΊΠ΅ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈΠΊΠΈ модСлирования ΠΈ сравнСния ошибки ΠΏΡ€Π΅Π΄Π»ΠΎΠΆΠ΅Π½Π½ΠΎΠΉ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈΠΊΠΈ с Ρ€Π°Π½Π½Π΅Π΅ использованной. ΠœΠ΅Ρ‚ΠΎΠ΄ΠΈΠΊΠ° Ρ€Π΅Π°Π»ΠΈΠ·Π°Ρ†ΠΈΠΈ. Π­ΠΊΡΠΏΠ΅Ρ€ΠΈΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½Ρ‹Π΅ Π΄Π°Π½Π½Ρ‹Π΅ ΡΡ€Π°Π²Π½ΠΈΠ²Π°ΡŽΡ‚ΡΡ с ΠΏΡ€ΠΎΠΌΠΎΠ΄Π΅Π»ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹ΠΌ ΠΎΡ‚ΠΊΠ»ΠΎΠ½Π΅Π½ΠΈΠ΅ΠΌ повСрхности Π² ΠΏΡ€ΠΎΠ³Ρ€Π°ΠΌΠΌΠ΅ k-Wave toolbox. ΠšΡ€ΠΈΡ‚Π΅Ρ€ΠΈΠΉ сравнСния – ΠΎΡ‚Π½ΠΎΡΠΈΡ‚Π΅Π»ΡŒΠ½Π°Ρ квадратичСская ошибка. Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ исслСдования. ΠŸΡ€ΠΎΠΌΠΎΠ΄Π΅Π»ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹Π΅ Π΄Π°Π½Π½Ρ‹Π΅ отклонСния повСрхности Π½Π° основС Π½ΠΎΠ²ΠΎΠΉ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈΠΊΠΈ большС ΡΠΎΠΎΡ‚Π²Π΅Ρ‚ΡΡ‚Π²ΡƒΡŽΡ‚ экспСримСнту Π² сравнСнии с ΠΏΡ€Π΅Π΄Ρ‹Π΄ΡƒΡ‰Π΅ΠΉ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈΠΊΠΎΠΉ. ΠšΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π΅ΡΠΊΠ°Ρ ошибка Π½ΠΎΠ²ΠΎΠΉ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈΠΊΠΈ составляСт 18 %, ΠΏΡ€Π΅Π΄Ρ‹Π΄ΡƒΡ‰Π΅ΠΉ – 71 %. Π’Ρ‹Π²ΠΎΠ΄Ρ‹. Π’ Ρ€Π°Π±ΠΎΡ‚Π΅ исслСдованы тСорСтичСскиС особСнности модСлирования отклонСния повСрхности ΠΈ ΠΏΡ€Π΅Π΄Π»ΠΎΠΆΠ΅Π½ΠΎ Ρ€Π΅ΡˆΠ΅Π½ΠΈΠ΅ этой Π·Π°Π΄Π°Ρ‡ΠΈ Π½Π° основании Π·Π°ΠΊΠΎΠ½Π° сохранСния ΠΈΠΌΠΏΡƒΠ»ΡŒΡΠ°. РСализация ΠΏΡ€Π΅Π΄Π»ΠΎΠΆΠ΅Π½Π½ΠΎΠΉ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈΠΊΠΈ ΠΈΠΌΠ΅Π΅Ρ‚ Π² Ρ‡Π΅Ρ‚Ρ‹Ρ€Π΅ Ρ€Π°Π·Π° ΠΌΠ΅Π½ΡŒΡˆΡƒΡŽ ΠΎΡˆΠΈΠ±ΠΊΡƒ модСлирования отклонСния Π² сравнСнии с ΠΏΡ€Π΅Π΄Ρ‹Π΄ΡƒΡ‰Π΅ΠΉ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈΠΊΠΎΠΉ, поэтому ΠΎΠ½Π° ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ Ρ€Π΅Π°Π»ΠΈΠ·ΠΎΠ²Π°Π½Π° Π² бСсконтактной ЀАВ. ΠžΡΡ‚Π°Ρ‚ΠΎΡ‡Π½Π°Ρ ошибка ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ обусловлСна свойствами Ρ‚ΠΊΠ°Π½ΠΈ, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ Π½Π΅ ΡƒΡ‡Ρ‚Π΅Π½Ρ‹ Π² ΠΌΠΎΠ΄Π΅Π»ΠΈ, Ρ‡Ρ‚ΠΎ Ρ‚Ρ€Π΅Π±ΡƒΠ΅Ρ‚ Π΄Π°Π»ΡŒΠ½Π΅ΠΉΡˆΠΈΡ… исслСдований

    Expression of a cell-cycle-associated nuclear antigen (MIB 1) in cholesteatoma and auditory meatal skin

    No full text
    Sudhoff H, Hildmann H, Fisseler-Eckhoff A, BujΓ­a J, Holly A, Schulz-Flake C. Expression of a cell-cycle-associated nuclear antigen (MIB 1) in cholesteatoma and auditory meatal skin. The Laryngoscope. 1995;105(11):1227-1231.Middle ear cholesteatoma is often invasive with consequent bone destruction. Inflammatory stimulation of the underlying connective tissue, as well as an autocrine mechanism, may be responsible for the dys‐regulation and abnormal proliferative features of the keratinocytes in cholesteatoma. Comparative investigations were performed to assess the epithelial cell kinetics of cholesteatoma and normal auditory meatal skin. Monoclonal antibody MIB 1 immuno‐staining (which recognizes a nuclear antigen expressed by dividing cells) was applied using the alkaline phosphatase antialkaline phosphatase im‐munolabeling method. Specimens of normal auditory meatal skin (n = 7) revealed an average MIB 1 score (quotient of the MIB 1‐positive cells and the total number of cells) of 7.6 Β± 2.2%. Cholesteatoma samples (n = 13) showed an average MIB 1 score of 17.4 Β± 8.9% and a heterogeneity of proliferating epithelial areas. Epithelial cones growing toward the underlying stroma exhibited high mitotic activity. Statistically, the results of this study confirm a highly significant increase in the proliferation rate of cholesteatoma keratinocytes, which had an MIB 1 score that was 2.3 times higher than the score for keratinocytes of normal external auditory meatal skin

    Health worker compliance with severe malaria treatment guidelines in the context of implementing pre-referral rectal artesunate in the Democratic Republic of the Congo, Nigeria, and Uganda: An operational study.

    No full text
    BackgroundFor a full treatment course of severe malaria, community-administered pre-referral rectal artesunate (RAS) should be completed by post-referral treatment consisting of an injectable antimalarial and oral artemisinin-based combination therapy (ACT). This study aimed to assess compliance with this treatment recommendation in children under 5 years.Methods and findingsThis observational study accompanied the implementation of RAS in the Democratic Republic of the Congo (DRC), Nigeria, and Uganda between 2018 and 2020. Antimalarial treatment was assessed during admission in included referral health facilities (RHFs) in children under 5 with a diagnosis of severe malaria. Children were either referred from a community-based provider or directly attending the RHF. RHF data of 7,983 children was analysed for appropriateness of antimalarials; a subsample of 3,449 children was assessed additionally for dosage and method of ACT provision (treatment compliance). A parenteral antimalarial and an ACT were administered to 2.7% (28/1,051) of admitted children in Nigeria, 44.5% (1,211/2,724) in Uganda, and 50.3% (2,117/4,208) in DRC. Children receiving RAS from a community-based provider were more likely to be administered post-referral medication according to the guidelines in DRC (adjusted odds ratio (aOR) = 2.13, 95% CI 1.55 to 2.92, P ConclusionsDirectly observed treatment was often incomplete, bearing a high risk for partial parasite clearance and disease recrudescence. Parenteral artesunate not followed up with oral ACT constitutes an artemisinin monotherapy and may favour the selection of resistant parasites. In connection with the finding that pre-referral RAS had no beneficial effect on child survival in the 3 study countries, concerns about an effective continuum of care for children with severe malaria seem justified. Stricter compliance with the WHO severe malaria treatment guidelines is critical to effectively manage this disease and further reduce child mortality.Trial registrationClinicalTrials.gov (NCT03568344)
    corecore