114 research outputs found

    Immunomodulatory Properties of Dental-Derived Mesenchymal Stem Cells

    Get PDF
    Mesenchymal stem cells are considered as an attractive tool for tissue regeneration. Almost all dental tissues contain a population of MSC-like cells, which were extensively studied within the last few years. Besides their ability to differentiate into different cell types, dental MSCs also possess strong immunomodulatory properties. Dental MSCs modulate both innate and adaptive immune response and influence the activity of almost all components of the immune system. The interaction between dental MSCs and the immune system is reciprocal because immunomodulatory activity of MSCs is strongly regulated by cytokines produced by immune cells. MSCs isolated from inflamed tissues might exhibit impaired immunomodulatory capacity, suggesting a potential role of these cells in inflammatory diseases and particularly periodontitis. Recent studies suggest that immunomodulatory properties of MSCs can also play an important role in their tissue regenerative capacity. The therapeutic effects of MSCs, including their immunomodulatory capacity, are largely explained by their tropic activity, including production of immunomodulatory proteins and growth factors. Summarizing, dental MSCs play an important role in tissue homeostasis under healthy and diseased conditions

    Fast kinetics of multivalent intercalation chemistry enabled by solvated magnesium-ions into self-established metallic layered materials

    Get PDF
    Rechargeable magnesium batteries are one of the most promising candidates for next-generation battery technologies. Despite recent significant progress in the development of efficient electrolytes, an on-going challenge for realization of rechargeable magnesium batteries remains to overcome the sluggish kinetics caused by the strong interaction between double charged magnesium-ions and the intercalation host. Herein, we report that a magnesium battery chemistry with fast intercalation kinetics in the layered molybdenum disulfide structures can be enabled by using solvated magnesium-ions ([Mg(DME)x]2+). Our study demonstrates that the high charge density of magnesium-ion may be mitigated through dimethoxyethane solvation, which avoids the sluggish desolvation process at the cathode-electrolyte interfaces and reduces the trapping force of the cathode lattice to the cations, facilitating magnesium-ion diffusion. The concept of using solvation effect could be a general and effective route to tackle the sluggish intercalation kinetics of magnesium-ions, which can potentially be extended to other host structures

    Impact of Age and Body Site on Adult Female Skin Surface pH

    Get PDF
    Background: pH is known as an important parameter in epidermal barrier function and homeostasis. Aim: The impact of age and body site on skin surface pH (pH(SS)) of women was evaluated in vivo. Methods: Time domain dual lifetime referencing with luminescent sensor foils was used for pH(SS) measurements. pH(SS) was measured on the forehead, the temple, and the volar forearm of adult females (n = 97, 52.87 +/- 18.58 years, 20-97 years). Every single measurement contained 2,500 pH values due to the luminescence imaging technique used. Results: pH(SS) slightly increases with age on all three investigated body sites. There are no significant differences in pH(SS) between the three investigated body sites. Conclusion: Adult pH(SS) on the forehead, the temple and the volar forearm increases slightly with age. This knowledge is crucial for adapting medical skin care products. Copyright (C) 2012 S. Karger AG, Base

    Imaging of the unstable plaque: how far have we got?

    Get PDF
    Rupture of unstable plaques may lead to myocardial infarction or stroke and is the leading cause of morbidity and mortality in western countries. Thus, there is a clear need for identifying these vulnerable plaques before the rupture occurs. Atherosclerotic plaques are a challenging imaging target as they are small and move rapidly, especially in the coronary tree. Many of the currently available imaging tools for clinical use still provide minimal information about the biological characteristics of plaques, because they are limited with respect to spatial and temporal resolution. Moreover, many of these imaging tools are invasive. The new generation of imaging modalities such as magnetic resonance imaging, nuclear imaging such as positron emission tomography and single photon emission computed tomography, computed tomography, fluorescence imaging, intravascular ultrasound, and optical coherence tomography offer opportunities to overcome some of these limitations. This review discusses the potential of these techniques for imaging the unstable plaque
    corecore