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Abstract

Mesenchymal stem cells are considered as an attractive tool for tissue regeneration. 
Almost all dental tissues contain a population of MSC-like cells, which were extensively 
studied within the last few years. Besides their ability to differentiate into different cell 
types, dental MSCs also possess strong immunomodulatory properties. Dental MSCs 
modulate both innate and adaptive immune response and influence the activity of almost 
all components of the immune system. The interaction between dental MSCs and the 
immune system is reciprocal because immunomodulatory activity of MSCs is strongly 
regulated by cytokines produced by immune cells. MSCs isolated from inflamed tissues 
might exhibit impaired immunomodulatory capacity, suggesting a potential role of these 
cells in inflammatory diseases and particularly periodontitis. Recent studies suggest that 
immunomodulatory properties of MSCs can also play an important role in their tissue 
regenerative capacity. The therapeutic effects of MSCs, including their immunomodu-
latory capacity, are largely explained by their tropic activity, including production of 
immunomodulatory proteins and growth factors. Summarizing, dental MSCs play an 
important role in tissue homeostasis under healthy and diseased conditions.

Keywords: mesenchymal stem cells, immune response, immunomodulation, 
T cells, dendritic cells, natural killer cells, B cells, macrophages, polymorphonuclear 
neutrophils

1. Introduction

Mesenchymal stem cells (MSC) are defined as cells that fulfill at least three criteria: adherence 
to culture plastic under standard cell culture condition; surface expression of mesenchymal 
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markers CD73, CD90 and CD105 as well as lacking expression of hematopoietic markers 
CD11b, CD14, CD34, CD45 and HLA-DR; ability to differentiate into osteoblasts, adipocytes 
and chondrocytes in vitro [1]. Originally, MSCs were isolated from bone marrow, but later 
MSC-like cells were found in different postnatal tissues [2]. MSC-like cells were isolated from 
numerous dental tissues: dental pulp stem cells (DPSCs) [3]; stem cells of human exfoliated 
deciduous teeth (SHED) [4]; periodontal ligament stem cells (PDLSCs) [5]; stem cells from 
apical papilla (SCAP) [6]; dental follicle stem cells (DFSCs) [7]; gingival mesenchymal stem 
cells (GMSCs) [8] and bone marrow MSCs from orofacial bones [9]. One peculiarity of most 
dental tissue-derived MSCs is that these cells express several neural lineage markers, which 
can be explained by their neural crest origin [10, 11].

MSCs in dental tissues reside in perivascular niches, where they are maintained in quies-
cent nondifferentiated state by specific microenvironment [12]. Upon tissue injury, these 
cells are recruited to the damaged area and participate in wound healing by proliferation 
and differentiation into tissue-specific cells [13]. Another important function of MSCs is 
modulation of immune and inflammatory response. Perivascular localization of MSCs 
is an essential factor, which enables their interaction with a wide range of cells during 
the process of their recruiting in vivo, as well as transvascular migration and modula-
tion of the functional acticity of these cells. Furthermore, inflammation is characterized by 
 chemotaxis of MSCs to inflamed area where they can perform their immunomodulatory 
function.

Although the exact mechanisms underlying immunomodulatory properties of MSCs are not 
fully understood, it is known that they depend on expression of enzymes, production of soluble 
factors and cell-to-cell contact. The most important factor involved in MSC-mediated immu-
nosuppression is indolamine-2,3-dioxygenase (IDO). This intracellular enzyme catalyzes the 
catabolism of tryptophan into kynurenine. The resulted tryptophan depletion leads to sup-
pression of different immune cells [14]. The expression of IDO is very low in resting MSCs and 
is drastically upregulated by interferon (IFN)-γ [15, 16]. The most important soluble factors 
mediating immunomodulatory effects of MSCs are prostaglandin E2 (PGE-2), transforming 
growth factor (TGF)-β, and interleukin (IL)-10. PGE-2 is a metabolic product of arachidonic 
acid cascade, which production is controlled by cyclooxygenase 2, and is involved in regula-
tion of both innate and adaptive immune system by MSCs [17]. Potent immunomodulatory 
cytokine TGF-β is continuously produced by MSCs, and its production can be enhanced by 
other anti-inflammatory factors such as IL-4 and IL-13 [18]. IL-10 is an anti-inflammatory 
cytokine, which can be produced either by MSCs themselves or by MSC-instructed immune 
cells [19]. Further soluble factors are also reported to be involved in MSC-mediated immuno-
modulation: human leukocyte antigen (HLA)-G5, galectins, hepatocyte growth factor, tumor 
necrosis factor α-stimulated gene 6 [20]. Direct cell-to-cell contact mediates immunosup-
pression effect of MSCs at least partially. This mechanism acts mainly through programmed 
death ligand 1 (PD-L1), which expression is upregulated by IFN-γ [21]. The membrane-bound 
HLA-G1 is another factor involved in direct interaction between MSCs and immune cells [21]. 
Summarizing, the mechanisms involved in MSC-mediated immunosuppression are com-
plicated; they are specific for individual cell types and are largely determined by degree of 
inflammation and microenvironment (Figure 1).
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2. Immunomodulatory effect of MSCs on different components of 
immune system and their role in dental tissues

2.1. T cells

T cells are one of the most important effector cells of the adaptive immune system, involved 
in the cell-mediated immune response. Antigen-specific activation of T cells via specialized 
antigen-presenting cells (APC) leads to clonal selection and differentiation of antigen-specific 
naïve T cells into different effector subtypes. Depending on which major histocompatibility 
complex (MHC) the antigen is presented, two different T cell subtypes evolve: CD4+ T-helper 
cell (MHC class II) with its different phenotypes (Th1/Th2/Th17/Treg) or CD8+ cytotoxic T cell 

Figure 1. Immunomodulatory effects of MSCs on different components of innate and adaptive immunity.
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(MHC class I). The subtypes/phenotypes differ in their surface marker expression, their cyto-
kine secretion profiles and their functions. CD8+ cytotoxic T cells are involved in destruction 
of virus-infected and tumor cells. Th1 cells are involved in eliminating pathogens, residing 
in vesicular compartments, whereas Th2 cells participate in B lymphocyte activation, lead-
ing to antibody producing plasma cells. In addition, Th17 cells detect extracellular patho-
gens, recruiting neutrophil granulocytes. Regulatory T cells exhibit a suppressive function, 
involved in the self-tolerance process and in diminishing inflammatory processes [22].

Although there are a lot of studies investigating the multiple roles of T lymphocytes in peri-
odontitis, the function of T cells in the pathogenesis of periodontitis is still to be clarified 
[23]. Both Th1 and Th2 cells are detected concurrently in inflamed periodontal tissue [24] 

and seem to be directly involved in alveolar bone destruction, mainly by producing RANKL 
[25]. Recently discovered, Th17 cells play an essential role in periodontitis and are one of 
the primary sources of RANKL [23, 26]. Regulatory T cell-produced IL-10 inhibits RANKL 
expression of T cells [27]. Periodontitis is shown to be associated with both increased and 
decreased number of Treg cells [27, 28].

Among all immune cells, the effect of MSCs on T cells is studied at most [29]. It is already 
known that MSCs influence the activation, proliferation and differentiation of T cells, modu-
lating T cell-mediated immune response [30]. MSCs are potent suppressors of T cell prolifera-
tion, including CD4+ T-helper and CD8+ cytotoxic T cells [29, 31]. This suppressive effect of 
MSCs is enhanced by priming with IFN-γ and TNF-α is mediated by IDO, PGE-2, HLA-G5 
[32–34] as well as by cell-to-cell contact through PD-L1 and HLA-G1 [35, 36]. In addition, 
MSCs suppress proliferation of naïve but not maturated CD8+ T cells [37]. Furthermore, 
MSCs modulate CD4+ T-helper cell differentiation, their cytokine production and the balance 
between different CD4+ T-helper subtypes [38, 39]. The effect of MSCs on T cell polarization 
might depend on their activation state [40]. Interestingly, nonprimed MSCs stimulate prolif-
eration of nonactivated T cells, but retain their ability to promote Treg formation [41].

MSCs from different dental tissues also show the ability to modulate T lymphocytes. T cell 
proliferation is inhibited by different IFN-γ primed dental MSCs, particularly DPSCs, PDLSCs, 
GMSC, and SCAP [8, 42–44]. DPSCs can also induce T cell apoptosis [45]. The inhibitory effect 
of dental MSCs on T cell proliferation is mediated mainly by IDO, hepatocyte growth factor 
(HGF), and TGF-β [29, 46]. Furthermore, DPSCs, PDLSCs, and SHED inhibit IL-17 production 
by T cells and stimulate formation of Treg cells, which might dampen periodontal inflam-
mation [42, 44, 47]. Interestingly, immunomodulatory properties of PDLSCs on T cells are 
impaired under inflammatory conditions. PDLSCs isolated from inflamed tissue exhibit lower 
inhibitory effect on T cell proliferation, Th17 differentiation, and IL-17 production as well as 

induce lower number of regulatory Treg cells and IL-10 production [44]. Moreover, PDLSCs 
from inflamed tissue also inhibit IFN-γ production by T cells and Th1 cell differentiation, 
whereas PDLSCs from healthy tissue have no effect on these parameters [44].

2.2. Dendritic cells

Dendritic cells constitute a critical interface between innate and adaptive immune response 
and are responsible for initiating antigen-specific immune response [48]. The major function of 
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classical dendritic cells is detection of invading pathogens and their presentation to the adaptive 
immune system, which results in initiation of long-lasting antigen-specific response. Besides 
antigen detection and presentation to T cells, classical DCs also produce pro-inflammatory 
cytokines, which plays a crucial role in T cell differentiation into different subsets. Classical 
DCs (cDCs) derive from bone marrow precursors and can be found in lymphoid tissue, bone 
marrow, and most nonlymphoid tissues. In the absence of pathogens, cDCs are immune 
tolerogenic and induce expansion of Treg [49]. Activation of cDCs by pattern recognition 
receptors induces their maturation, migration to lymph node and priming of T cells. Besides 
cDCs, there are several nonclassical DCs subsets: monocyte-derived DCs, plasmacytoid DCs 
and Langerhans cells [50].

In recent years, an importance of dendritic cells in both maintaining of periodontal health and 
progression of periodontal disease was recognized [51]. Under healthy conditions, immature 
DCs of periodontal tissue promote production of Treg cells and thus are involved in induction 
of immune tolerogenic state. Langerhans cells, which are present in sulcular and junctional 
epithelium, are also involved in maintenance of periodontal health homeostasis via induction 
of Treg cells [51]. Upon exposure to periodontal pathogens, DCs can contribute to different 
types of adaptive immune response. Activation of Th1, Th2, or Th17 response by DCs might 
be both beneficial and destructive for the host [52]. The activation and maturation of dendritic 
cells is influenced by periodontal pathogen Porphyromonas gingivalis [53], which is thought to 
lead to subversion of local immunity and alteration of host immune homeostasis.

The functional activity of dendritic cells is substantially affected by MSCs. Bone marrow 
MSCs inhibit differentiation of DCs from their precursors. This concerns both classical DCs 
and monocyte-derived DCs [54–56]. Furthermore, DCs differentiated in the presence of 
bone marrow MSCs exhibit impaired maturation upon stimulation with pattern recognition 
receptors and/or inflammatory cytokines [54, 57, 58]. Interestingly, no impaired maturation 
is observed when DCs are differentiated in the presence of MSCs isolated from inflamed tis-
sue.” ocktail [59]. In contrast to DCs differentiation, the effect of MSCs on the maturation of 
differentiated DCs is less obvious. On the one hand, some studies show that MSCs inhibit 
maturation of differentiated DCs [60, 61]. On the other hand, some studies show that MSCs 
have no effect on maturation of differentiated DCs [54] or even can potentiate this process 
[62, 63]. The process of DCs maturation is also stimulated by MSCs originating from inflamed 
tissue [59]. The effect of MSCs on DCs is often associated with production of IL-6 and PGE-2, 
which are known to inhibit DCs differentiation [64, 65] and stimulate their maturation [66]. 
Another important factor for interaction between MSCs and DCs is TNF-stimulated gene 6 
protein (TSG-6), which is produced by MSCs and might inhibit DCs maturation [67].

MSCs derived from different dental tissues also exhibit an ability to modulate the function 
of DCs. Periodontal ligament STRO1+ CD146+ stem cells inhibit expression of nonclassical 
major histocompatibility complex-like glycoprotein CD1b, which results in inhibition of 
DC-mediated T cell proliferation [68]. Gingiva-derived MSCs are shown to inhibit maturation 
and activation of DCs resulting in attenuation of the inflammatory response, associated with 
PGE-2-dependent mechanisms [69]. MSCs derived from SHED are shown to influence differ-
entiation, maturation, and T cell activation ability of monocyte-derived DCs [70]. Particularly, 
after exposure to SHED-derived MSC, DCs induce higher proportion of Treg cells, exhibit 
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decreased production of pro-inflammatory cytokines IL-2, TNF-α, and IFN-γ and produce 
increased levels of anti-inflammatory IL-10 protein [70].

2.3. Natural killer cells

Natural killer cells (NK cells) are originally thought to be a component of innate immune 
system, but studies of last few years show that these cells have attributes of both innate 
and adaptive immune system [71]. NK cells can directly induce the death of tumor and 
virus-infected cells. Additionally, NK cells are considered as a major source of IFN-γ and 
also produce other cytokines. This makes them important players of immune system, 
regulating the function of other immune cells like DCs, macrophages, neutrophils, T cells 
and B cells [72–76]. Two major populations of NK cells are present in peripheral blood. 
Predominant population of NK cells is CD56dimCD16+ and exhibits moderate expression of 
CD56. Approximately 5% of all NK cells show CD56brightCD16− phenotype and exhibit high 
expression of CD56 [77].

Although NK cells play an important role in both innate and adaptive immune response, 
their role in periodontal disease remains obscure [78]. Chronic periodontitis is associated 
with an increased number of NK cells in human gingiva [79, 80]. NK cells are considered 
as one of the major sources of IFN-γ [81], which can be associated with increased tissue 
destruction and periodontal disease severity [82, 83]. Besides, NK cells can directly interact 

with some periodontal pathogens. Interaction between P. gingivalis and NK cells leads to 
enhanced IFN-γ production and is involved in production of P. gingivalis specific IgG2 [84]. 
Another periodontal pathogen A. actinomycetemcomitans promotes IFN-γ production by NK 
cells either directly or mediated by DCs [85]. Direct recognition of Fusobacterium nucleatum 

by NK cells through their receptor NKp46 contributes to increased tissue destruction in 
experimental periodontitis [86].

NK cells and MSCs interact in a complex reciprocal manner. Cultured MSCs are recognized 
and lysed by NK cells that are activated by IL-2 or IL-15, which could be explained by low 
MHC class I expression on MSCs’ surface. Interestingly, priming of MSCs by IFN-γ induces 
upregulation of MHC class I expression and prevents them from being killed by activated 
NK cells. The susceptibility of MSCs for NK cells mediated killing is also regulated by toll 

lile receptor (TLR) activation [87]. MSCs primed with TLR-3 are protected from being killed 
by activated NK cells, whereas priming with TLR-4 and TLR-7/-8 has no significant effect 
on MSCs susceptibility to NK cell mediated lysis [88]. In turn, MSCs also influence activity 
of NK cells. Particularly, MSCs suppress cytokine production and cytotoxicity of freshly 
isolated NK cells but not those of activated NK cells [37, 89, 90]. The effect of MSCs on NK 
cells is largely mediated by IDO and PGE-2 [89].

Information about interaction of dental MSCs and NK cells is rather limited. Similarly to bone 
marrow MSCs, dental pulp stem cells are susceptible to lysis by activated NK cells [91]. NK 
cells exert the strongest cytotoxic effect on undifferentiated DPSCs, whereas differentiated cells 
are less susceptible to lysis [92]. DPSCs could be protected from NK cell mediated cytotoxicity 
by co-culture with monocytes [92] or by overexpression of hypoxia-inducible factor 1 [93].
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2.4. B cells

B cells are an indispensable component of the adaptive immune response, which is mainly 
involved in antibody production. B cells develop from hematopoietic progenitor cells in the 
fetal liver and in the bone marrow postnatal [94]. After exiting bone marrow, immature B 
cells migrate to secondary lymph organs like the spleen or lymph nodes, where they may 
encounter antigens through interaction with antigen-presenting cells like dendritic cells and 
macrophages. After interaction with antigen, B cells differentiate into short-lived antibody-
producing plasma cells. Alternatively, B cells may enter a germinal center, where they 
undergo clonal expansion, class switch recombination and somatic hypermutation resulting 
in differentiation into high affinity antibody-producing plasma cells and memory B cells [95]. 
Recent studies revealed that beside antibody production, B cells are also involved in the pro-
cesses of antigen presentation and cytokine production [96–98].

B cells and plasma cells are the major leukocytes in periodontal lesions and represent 18% and 
50% of all infiltrating cells, respectively [99]. Despite this fact, the role of B cells in periodonti-
tis is not characterized sufficiently. B cells comprise several functionally different subsets and 
their distribution is altered in patients with severe periodontitis [100]. The major function of 
B cells is producing specific antibodies against periodontal pathogens, which is an important 
step of bacteria elimination [101]. However, B cells are also considered as major source of 
deleterious effects of immune response. Particularly, B cells are known to be one of the major 
sources of RANKL, which plays a central role in bone resorption by osteoclasts [102]. Mice 
with B cells immunoglobulin D deficiency exhibit lower alveolar bone loss upon oral infec-
tion, suggesting an important role of B cells in tissue destruction [103]. Some B cells subsets 
are also involved in the autoimmune response in periodontitis [99].

The information about the effect of MSCs on B cells is rather controversial: it seems that 
this effect depends on several factors like B cells maturation state, stimuli used for B cells 
proliferation and differentiation and ratio between MSCs and B cells. Thus, MSCs inhibit 
B cell proliferation at MSC:B cell ratio 1:1 to 1:2 [104], but stimulate B cell proliferation at 
ratio 1:5 to 1:10 [104]. Interestingly, under highly proliferative conditions, MSCs inhibit  
B cell proliferation even at low MSC:B cells ratio [104]. MSCs stimulate proliferation of naïve 
and memory B cells [105]. MSCs enhance IgG production by B cells upon stimulation with 
lipopolysaccharide or cytomegalovirus [106], but inhibit production of IgG, IgA and IgM 
in mixed lymphocyte culture [107]. Pre-exposure of MSCs to IFN-γ enhances their inhibi-
tory effect on B cell proliferation and IgG production [108, 109] but eliminate their ability to 
induce regulatory B cells [109]. The inhibitory effect of MSCs on B cells largely depends on 
cell-to-cell contact, in which interaction between programmed death-1 (PD-1) and its ligand 
PD-1 L takes place [108, 110].

The information about the effect of dental MSCs on functional activity of B cells is rather lim-
ited. The only one report shows that PDLSCs influence B cells both in vitro and in vivo [111]. 
Particularly, PDLSCs inhibit proliferation, differentiation and chemotaxis of B cells in vitro as 

well as fail to activate humoral immunity in vivo in miniature pig models [111]. This inhibitory 
effect of PDLSCs on B cells is achieved by interaction of PD-1 and its ligand PD-1 L [111].
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2.5. Macrophages

Macrophages are phagocytic tissue resident cells of the innate immune system, which are 
generated from peripheral blood monocytes. Macrophages are found almost in all tissues 
and their differentiation is determined by specific tissue environments in physiological or 
inflammatory conditions [112]. The major function of macrophages is the elimination of 
pathogens by phagocytosis and antigen presentation to cells of the adaptive immune sys-
tem [113]. In addition to pathogen elimination, macrophages are involved in regulation of 
immune response, inflammation resolution and immune suppression [114]. Besides their role 
in immunity, macrophages also play a central role in the clearance of apoptotic cells and 
damaged tissue [115]. In the early 1990s, a concept for classically activated pro-inflammatory 
M1 macrophages and alternatively activated anti-inflammatory M2 macrophages emerged. 
Nowadays, the M1-M2 concept of macrophages activation is extensively revisited since it 
became obvious that macrophages exhibit extremely high plasticity [116]. Upon activation, 
macrophages adapt an intermediate state which exhibits some features of both M1 and M2 
types, which are considered as extreme states. The activation state of macrophages is driven 
by the environment and thereby, macrophages are thought to provide an optimal progression 
of the immune response.

Macrophages activation and polarization to M1-like or M2-like phenotypes play an essential 
role in the progression of periodontal disease. Upon infection, macrophages are polarized into 
M1-like phenotype, promote inflammatory response and are correlated with bone resorption 
[117]. These macrophages produce high amount of cytokines such as IL-1, TNF-α, IL-6, MMP-9, 
which are associated with periodontal tissue destruction. Moreover, M1 macrophages produce 
high amount of IL-12 and IL-23. These cytokines stimulate differentiation and proliferation 
of Th17 cells, which promote further tissue destruction [118]. In case of successful pathogen 
elimination, a switch into M2-like phenotype occurs. These macrophages play a crucial role 
in the clearance of apoptotic cells and damaged tissue as well as in wound healing promo-
tion. The increased level of IL-10, which is produced by M2 macrophages, is associated with 
decreased severity of periodontitis. The ratio between M1 and M2 macrophages is increased 
in periodontal disease compared to the healthy state and gingivitis [119, 120]. Moreover, the 
enhanced levels of M1 macrophages correlate with the pocket depth and the levels of tissue 
destructive cytokines IL-1β and MMP-9 [120].

MSCs modulate the polarization of macrophages. Co-culture of macrophages with MSCs 
induces their polarization towards regulatory M2 phenotype and is characterized by decreased 
production of pro-inflammatory TNF-α and IL-12, increased production of IL-10, increased 
expression of M2 marker CD206 and enhanced phagocytic activity [121, 122]. The polarization 
of macrophages into M2 phenotype by MSCs is mediated mainly by PGE-2 and IDO [122, 123]. 
However, the contribution of direct cell-to-cell contact to MSC-mediated macrophage polar-
ization cannot be excluded as well [124]. Induction of macrophages regulatory phenotype is 
also observed upon systemic or local MSCs administration [122, 125]. Macrophages co-cul-
tured with MSCs are described as a novel type and called MSC-educated macrophages [121]. 
These macrophages are currently considered for potential clinical application in the treatment 
of myocardial infarction, graft rejection, diabetes mellitus, ischemic disease and so on [126].
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Macrophages polarization is also influenced by different dental MSCs. Human gingiva-
derived MSCs induce macrophages polarization into M2 phenotype, which can be associated 
with an acceleration of wound healing [127]. Human DPSCs isolated from both healthy and 
inflamed tissue markedly suppress LPS-induced TNF-α production by macrophages through 
IDO-dependent mechanism [128]. Transplantation of DPSCs into the unilateral hindlimb 
skeletal muscle suppresses inflammation of sciatic nerves by promoting macrophages M2 
polarization [129]. Conditioned medium of periodontal ligament stem cells enhances peri-
odontal regeneration, which was accompanied by alteration of macrophages activity [130]. 
Recently, SCAP is shown to attenuate neuro-inflammation, which was accompanied by regu-
lation of macrophages activity [131].

2.6. Polymorphonuclear neutrophils

Polymorphonuclear neutrophils are the major fraction of leukocytes circulating in blood 
(50–70%) and form the first line of host defense against pathogens [132]. Under physiologi-
cal conditions, up to 2 × 1011 neutrophils are generated from myeloid precursors in the bone 
marrow daily. To fulfill their key role in the innate immune response, neutrophils must be 
recruited from bloodstream to the sites of inflammation. Transendothelial migration of neu-
trophils is a complex process initiated upon activation of tissue-resident leukocytes by invad-
ing pathogens [133]. Neutrophils are rather short-lived cells and their lifespan in peripheral 
blood is thought to be up to 7 h and might be prolonged under inflammatory conditions 
[134]. Upon tissue migration, the lifespan of neutrophils might be extended up to 2 days 
[135]. Neutrophils possess several pathogen elimination mechanisms. First, pathogens can 
be phagocytized and exposed to reactive oxygen species or antibacterial proteins released 
from the neutrophils granules [136]. Another possibility is the elimination of pathogens via 
neutrophil extracellular traps (NETs), which consist mainly of DNA and are capable of direct 
degradation and elimination of bacteria [137]. Recently, a regulatory role of neutrophils in 
inflammatory response and inflammation resolution has been emerged [138].

Neutrophils play an important role in the homeostasis of periodontal tissue in both healthy 
and diseased conditions [139]. Neutrophils comprise more than 95% of all leukocytes 
recruited into the gingival sulcus by dental biofilm [140] and prevent potential bacterial inva-
sion into gingival tissue under healthy conditions. Nevertheless, they are not sufficiently 
effective in control of dysbiotic microbiota [141]. In addition, keystone pathogen P. gingivalis 

can subvert neutrophil-mediated immunity and promote the conversion of symbiotic micro-
biota to dysbiotic one [142]. Congenital disorders associated with either neutrophil deficiency 
or impairment of their life cycle are characterized by the development of aggressive forms 
of periodontal disease [143]. The maintenance of periodontal health is critically dependent 
on number and distribution of neutrophils: both insufficient and unrestrained neutrophils 
recruitment is associated with periodontal inflammation [142].

The knowledge about the interaction of MSCs and neutrophils is rather limited. So far, MSCs 
were found to exhibit some modulating effects on polymorphonuclear neutrophils. Both resting 
and TLR-3 primed MSCs have been shown to exert antiapoptotic effects on neutrophils medi-
ated by IL-6, IFN-β and granulocyte macrophage colony-stimulating factor (GM-CSF) [144]. 
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These antiapoptotic effects have also been observed at very low MSC:neutrophil ratio of 
up to 1:500 in naïve and IL-8 activated neutrophils [145]. Additionally, MSCs dampened 
the N-formyl-l-methionin-l-leucyl-l-phenylalanine (f-MLP)-induced respiratory burst [145]. 
Furthermore, MSCs augment antibacterial activity of neutrophils [146]. Human MSCs from 
amniotic membrane inhibit NET release by neutrophils through a TSG-6 dependent mecha-
nism [147]. The efficacy of MSCs to suppress neutrophils recruitment might also partially 
depend on MSCs’ origin [148].

MSCs of dental origin were also shown to influence neutrophils’ functional properties. 
Particularly, PDLSCs significantly reduce neutrophil apoptosis and enhance their antimicro-
bial function [149]. PDLSCs exhibit antiapoptotic and proliferation promoting effects on IL-8 
activated neutrophils through IL-6 production [150]. The effect of PDLSCs on neutrophils 
seems to be independent on cell-to-cell contact. Human DFSCs infected with periodontal 
pathogens P. intermedia or T. forsythia reduce neutrophil chemotaxis, phagocytic activity and 
NET formation [151]. Further investigations are needed to clarify the interactions between 
MSCs of dental origin and polymorphonuclear neutrophils as well as their underlying 
mechanisms.

2.7. Mast cells

Mast cells are bone marrow-derived granule-containing immune cells, which are present 
in almost all tissues, including several dental tissues. Upon activation, mast cells release 
numerous inflammatory mediators from their granules, which are either preformed (his-
tamine, TNF-α, cathepsin G, etc.) or synthesized de novo (interleukins, platelet activating 
factor, macrophage inhibitory factor 1α) [152]. Mast cells are recognized to be involved in 
allergic reaction and autoimmunity, but also play an important role in pathogenesis of some 
inflammatory diseases, particularly arthritis and multiple sclerosis [153, 154]. The func-
tions of mast cells are phagocytosis, antigen presentation and regulation of other cells of 
the immune system, particularly monocytes, T cells and B cells [155]. Beside inflammatory 
mediators, mast cells also secrete different growth factors such as VEGF, FGF, TGF-β and 
PDGF [156].

The role of mast cells in periodontitis is investigated rather poorly and the existing data are 
sometimes controversial [157]. Two studies show that the density of mast cells is increased in 
patients with gingivitis and further increased in periodontitis patients suggesting a potential 
role of these cells in disease progression [158, 159]. In contrast, a decrease in mast cells density 
or even lack of these cells is reported for marginal chronic gingivitis and acute necrotizing 
gingivitis [160]. In human, degranulation of mast cells correlates with periodontal disease 
severity underlying the role of these cells in disease progression [161].

The effect of MSCs on mast cells function is investigated only by few studies. Bone mar-
row MSCs suppress mast cells degranulation, cytokine production and chemotaxis through 
production of PGE-2 by COX-2 [162, 163]. MSCs derived from human umbilical cord blood 
inhibit mast cells degranulation in pre-clinical model through PGE-2- and TGF-β1-dependent 
mechanisms [164]. The effect of dental MSCs on mast cells function is not investigated to date.

Periodontology and Dental Implantology30



2.8. Complement

The complement system is a component of the innate immune system comprising more than 
40 plasma proteins, which are primarily produced in the liver as inactive precursors [165]. The 
complement could be activated through three different pathways: classic, alternative and lec-
tin pathway. All three pathways are converged at C3 complement component and lead to the 
generation of different effectors. Complement system components are involved in pathogen 
destruction, amplification of immune response through synergy with TLRs, mobilization of 
hematopoietic stem cells from the bone marrow and regulation of T cells subsets activation [166].

The complement system plays an important role in pathogenesis of periodontal disease [167, 
168]. Component of complement system is present in the gingival crevice, and its concentra-
tion is increased in periodontitis. As the first defense line of immune system, complement 
system is involved in the control of oral microbiota and maintenance of host-microbial 
homeostasis in the oral cavity [169]. Exploitation of complement components by periodontal 
pathogens, particularly P. gingivalis, leads to dysregulation of host immune system, dysbiosis 
of oral microbiota and triggering destructive inflammatory processes [169, 170].

Interaction of MSCs with complement system is bilateral and not yet completely investigated. 
Upon intravenous injection, MSCs activate complement system, which leads to their damage 
by membrane attack complex [171]. However, MSCs might inhibit complement activation and 
associated damage by secreting factor H, which is increased by pro-inflammatory cytokines 
TNF-α and IFN-γ [172]. Bone marrow MSCs can also synthesize some components of comple-
ment system and thus influence some immune cells. Particularly, mycoplasma-induced pro-
duction of C3 protein is shown to inhibit Ig production by B cells [173].

To date, only interaction of dental pulp cells with complement system was investigated. Upon 
stimulation with lipoteichoic acid, dental pulp progenitor cells produce almost all compo-
nents required for activation of complement system [174]. Moreover, DPSCs express C3a- and 
C5a receptors, which are activated by complement system and induce cell proliferation and 
mobilization [174, 175].

3. Immunomodulatory effect of MSCs on different components of 
immune system and their role in dental tissues

Similarly to bone marrow MSCs, immunomodulatory properties of dental MSCs are not con-
stitutive and are affected by surrounding microenvironment. Immunomodulation capacity of 
quiescent MSCs is usually low and can be drastically enhanced upon stimulation with inflam-
matory cytokines such as IFN-γ, TNF-α and IL-1β [176]. These cytokines are mainly produced 
by activated immune cells and thus MSCs and immune cells regulate each other reciprocally. 
This interaction plays an important role in tissue homeostasis as well as in the processes of 
inflammation and tissue repair. Upon activation with inflammatory cytokines, MSCs usually 
adapt an immunosuppressive phenotype and might dampen excessive inflammatory response 

[177]. However, under low levels of inflammation, MSCs might also stimulate immune response 
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and promote inflammation [177]. In dental MSCs, inflammatory cytokines usually increase the 
expression of immunomodulatory proteins. Activated PBMCs enhances the expression of TGF-
β1, hepatocyte growth factor and IDO-1 in PDLSCs, DPSCs, and gingival MSCs [178]. IDO 
expression is drastically upregulated by IFN-γ in different dental MSCs [16, 178].

The immunomodulatory capacity of MSCs is also influenced by different pathogen-associated 
molecular patterns through activation of TLRs, but the role of MSCs priming by TLR is rather 
controversial to date. In some cases, priming of MSCs by TLR-3 and TLR-4 ligands enhances 
their immunosuppressive effect [179]. Another report shows that TLR-3 and TLR-4 activation 
results in abolishment of MSCs ability to suppress T cells activation [180]. These differences 
could be explained by the fact that activation of TLRs in MSCs induces production of both 
anti-inflammatory and pro-inflammatory mediators. The role of TLRs in immunomodula-
tory capacity of dental MSCs is currently under investigation and might be tissue specific. 
TLR-3 agonist augments immunosuppressive potential of DPSCs and dental follicle stem 
cells, whereas TLR-4 agonist augments immunosuppressive properties of dental follicle stem 
cells but inhibits those of DPSCs [181]. Different bacterial lipopolysaccharides induce produc-
tion of proinflammatory mediators IL-6, IL-8 or MCP-1 in PDLSCs and DPSCs [16, 182–184]. 
TLR-2 and TLR-4 agonists fail to induce the expression of IDO-1 on protein level in PDLSC, 
but TLR-2 agonist enhances IFN-γ-induced IDO-1 expression [16]. In turn, LPS also enhances 
production of anti-inflammatory PGE-2 by PDLSCs [184]. Thus, TLR agonist might activate 
both proinflammatory and anti-inflammatory properties of dental MSCs and their exact role 
in inflammatory response is determined by other factors, like degree of inflammation and 
microenvironment.

Dental MSCs are located in the region which is continuously exposed to different bacterial 
challenges. Inflammatory milieu has a substantial effect on immunomodulatory properties of 
dental MSCs. PDLSCs isolated from inflamed tissue exhibit higher migratory capacityas well 
as impaired ability to promote Treg induction and suppress Th17 differentiation compared to 
cells isolated from healthy tissue [44, 185]. Similarly, DPSCs derived from teeth with pulpitis 
fail to suppress proliferation of PBMCs, but this ability might be restored by IFN-γ [186]. In 
contrast to above data, one study found no difference between DPSCs isolated from normal 
and inflamed tissues in their ability to modulate macrophage function [128]. To summarize, 
the alteration of immunomodulatory properties of dental MSCs under inflammatory condi-
tions might play an essential role in the progression of different inflammatory disease such as 
pulpitis, gingivitis and periodontitis.

4. Contribution of the immunomodulatory effects of MSCs in their 
tissue regenerative potential

Although the regenerative potential of MSCs is largely recognized, their application for tis-
sue regeneration in clinic is still limited. The major hurdle for clinical application of MSCs is 
the fact that the mechanisms of their differentiation in vivo are largely unknown. Preclinical 
studies and clinical trials with MSCs transplantation show that the rate of MSCs engraftment 
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is rather poor and does not correlate with the clinical outcome of MSC-based therapy. The 
lifetime of transplanted MSCs is rather short: for example, intravenously injected MSCs are 
accumulated in the lung, where they disappear within 24 h [187]. Although the exact mecha-
nisms of MSCs differentiation in vivo are unknown, it is a fact that differentiation is regulated 
by the local microenvironment and interaction of transplanted MSCs with the hosts´ immune 
system is one of the key elements in this process [188]. The mechanisms underlying MSCs 
differentiation in vivo are also altered by diseased microenvironments [189]. Moreover, trans-
planted MSCs themselves contribute to the creation of the microenvironment through their 
immunomodulatory function and the production of different growth factors, which in turn 
promote activation of endogenous tissue repair mechanisms [190]. Immunomodulatory and 
tropic capacity of MSCs are now considered as the major mechanisms of their therapeutic 
effect in vivo. This statement is supported by the observations that the secretome of MSCs 
exert similar tissue regenerative effects as transplanted MSCs [191]. Furthermore, the secre-
tome of MSCs possess also strong immunomodulatory effects [20, 192].

It is rather difficult to discriminate between the role of regenerative potential and immuno-
modulatory abilities in the output of MSC-based therapies. Tissue regeneration is a complex 
process, which consists of several timely overlapping phases and involves interaction between 
different cell types. The immune system plays an important role in the processes of tissue 
repair and regeneration. Different immune cells are involved in the different stages of tissue 
regeneration processes [193]. Neutrophils and macrophages are the major cells involved in 
the inflammatory phase and are responsible for bacteria phagocytosis and removal of tis-
sue debris. Regenerative M2 macrophages and regulatory T cells secrete anti-inflammatory 
cytokines, which create microenvironments promoting tissue repair. Therefore, the modula-
tion of the immune response by MSCs might be an important mechanism underlying their 
regenerative potential. Regenerative potential of MSCs and their immunomodulatory proper-
ties are tightly interconnected. Many factors mediating immunomodulatory effects of MSCs 
are also influencing their differentiation potential. Particularly, activation of IDO by IFN-γ 
alters osteogenic, adipogenic and neural differentiation of human MSCs [194]. TSG-6, another 
immunomodulatory factor produced by MSCs, plays a crucial role in their differentiation 
ability [195, 196]. TGF-β produced by MSCs is potentially involved in both regenerative and 
immunomodulatory function of these cells [197].

Immunomodulatory properties of dental MSCs also seem to play an important role in the 
regeneration of dental tissues [198]. The major information about the potential role of immuno-
modulatory properties in therapeutic efficacy of dental MSCs arise from animal studies. Most 
studies suggest that allogenic transplantation of dental MSCs is well tolerated by recipients’ 
immune system and does not induce any immune rejection [199]. Systemic transplantation 
of SHED cells ameliorates ovariectomy-induced osteopenia presumably through induction 
of Treg cells and reducing Th1 and Th17 cells number [200]. Transplantation of allogenic 
bone marrow MSCs into periodontal defects suppressed local levels of pro-inflammatory 
cytokines IL-1β, TNF-α and IFN-γ, which indicates their immunomodulatory function in 

vivo [201]. An in vitro study shows that the differentiation potential of PDLSCs is influenced 
by inflammatory microenvironments and is largely determined by their immunomodulatory 
properties [202].
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5. Conclusions

Dental MSCs, similarly to MSCs from other tissues, influence the properties of both the innate 
and the adaptive immune system. Particularly, dental MSCs change the functional activities 
of all components of the immune system: T cells, dendritic cells, natural killer cells, B cells, 
macrophages, neutrophils, mast cells and complement system. The effects of MSCs are mostly 
immunosuppressive, but in some cases, MSCs might also enhance the immune response. The 
immunomodulatory mechanisms of MSCs include both production of soluble mediators 
and cell-to-cell contact. The interaction between MSCs and the immune system is recipro-
cal: immunomodulatory ability of resting MSCs is rather low and is substantially enhanced 
by proinflammatory cytokines IFN-γ, TNF-α and IL-1β. This circumstance suggests a tight 
interaction between MSCs and the immune system, which plays an important role in the 
maintenance of local tissue homeostasis.

In some cases, dental MSCs isolated from inflamed tissues exhibit impaired immunomodu-
latory capacity. Furthermore, immunomodulatory properties of dental MSCs might also be 
influenced through activation of their TLRs by different pathogen-associated bacterial pat-
terns. These observations suggest that dental MSCs might also play an important role in the 
pathogenesis of different inflammatory diseases and particularly periodontitis.

Although dental MSCs exhibit significant differentiation capacity in vitro, the mechanisms 
underlying their regenerative potential in vivo are still unclear. Since the immune system 
plays one of the key roles in tissue repair processes, immunomodulatory capacity of dental 
MSCs could be considered as one of the major mechanisms of their effects in vivo.
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