148 research outputs found

    Scanning X-ray nanodiffraction: from the experimental approach towards spatially resolved scattering simulations

    Get PDF
    An enhancement on the method of X-ray diffraction simulations for applications using nanofocused hard X-ray beams is presented. We combine finite element method, kinematical scattering calculations, and a spot profile of the X-ray beam to simulate the diffraction of definite parts of semiconductor nanostructures. The spot profile could be acquired experimentally by X-ray ptychography. Simulation results are discussed and compared with corresponding X-ray nanodiffraction experiments on single SiGe dots and dot molecules

    In vivo effects of romidepsin on T-Cell activation, apoptosis and function in the BCN02 HIV-1 kick&Kill clinical trial

    Get PDF
    Romidepsin (RMD) is a well-characterized histone deacetylase inhibitor approved for the treatment of cutaneous T-cell lymphoma. in vitro and in vivo studies have demonstrated that it is able to induce HIV-1 gene expression in latently infected CD4+ T cells from HIV-1+ individuals on suppressive antiretroviral therapy. However, in vitro experiments suggested that RMD could also impair T-cell functionality, particularly of activated T cells. Thus, the usefulness of RMD in HIV-1 kick&kill strategies, that aim to enhance the immune system elimination of infected cells after inducing HIV-1 viral reactivation, may be limited. In order to address whether the in vitro observations are replicated in vivo, we determined the effects of RMD on the total and HIV-1-specific T-cell populations in longitudinal samples from the BCN02 kick&kill clinical trial (NCT02616874). BCN02 was a proof-of-concept study in 15 early treated HIV-1+ individuals that combined MVA.HIVconsv vaccination with three weekly infusions of RMD given as a latency reversing agent. Our results show that RMD induced a transient increase in the frequency of apoptotic T cells and an enhanced activation of vaccine-induced T cells. Although RMD reduced the number of vaccine-elicited T cells secreting multiple cytokines, viral suppressive capacity of CD8+ T cells was preserved over the RMD treatment. These observations have important implications for the design of effective kick&kill strategies for the HIV-1 cure

    Pairing in the iron arsenides: a functional RG treatment

    Full text link
    We study the phase diagram of a microscopic model for the superconducting iron arsenides by means of a functional renormalization group. Our treatment establishes a connection between a strongly simplified two-patch model by Chubukov et al. and a five-band- analysis by Wang et al.. For a wide parameter range, the dominant pairing instability occurs in the extended s-wave channel. The results clearly show the relevance of pair scattering between electron and hole pockets. We also give arguments that the phase transition between the antiferromagnetic phase for the undoped system and the superconducting phase may be first order

    High-resolution 7-Tesla fMRI data on the perception of musical genres – an extension to the studyforrest dataset

    Get PDF
    Here we present an extension to the studyforrest dataset – a versatile resource for studying the behavior of the human brain in situations of real-life complexity (http://studyforrest.org). This release adds more high-resolution, ultra high-field (7 Tesla) functional magnetic resonance imaging (fMRI) data from the same individuals. The twenty participants were repeatedly stimulated with a total of 25 music clips, with and without speech content, from five different genres using a slow event-related paradigm. The data release includes raw fMRI data, as well as precomputed structural alignments for within-subject and group analysis. In addition to fMRI, simultaneously recorded cardiac and respiratory traces, as well the complete implementation of the stimulation paradigm, including stimuli, are provided. An initial quality control analysis reveals distinguishable patterns of response to individual genres throughout a large expanse of areas known to be involved in auditory and speech processing. The present data can be used to, for example, generate encoding models for music perception that can be validated against the previously released fMRI data from stimulation with the “Forrest Gump” audio-movie and its rich musical content. In order to facilitate replicative and derived works, only free and open-source software was utilized

    Data sharing in neuroimaging research

    Get PDF
    Significant resources around the world have been invested in neuroimaging studies of brain function and disease. Easier access to this large body of work should have profound impact on research in cognitive neuroscience and psychiatry, leading to advances in the diagnosis and treatment of psychiatric and neurological disease. A trend toward increased sharing of neuroimaging data has emerged in recent years. Nevertheless, a number of barriers continue to impede momentum. Many researchers and institutions remain uncertain about how to share data or lack the tools and expertise to participate in data sharing. The use of electronic data capture (EDC) methods for neuroimaging greatly simplifies the task of data collection and has the potential to help standardize many aspects of data sharing. We review here the motivations for sharing neuroimaging data, the current data sharing landscape, and the sociological or technical barriers that still need to be addressed. The INCF Task Force on Neuroimaging Datasharing, in conjunction with several collaborative groups around the world, has started work on several tools to ease and eventually automate the practice of data sharing. It is hoped that such tools will allow researchers to easily share raw, processed, and derived neuroimaging data, with appropriate metadata and provenance records, and will improve the reproducibility of neuroimaging studies. By providing seamless integration of data sharing and analysis tools within a commodity research environment, the Task Force seeks to identify and minimize barriers to data sharing in the field of neuroimaging

    Microscopic origin of Cooper pairing in the iron-based superconductor Ba₁₋ₓKₓFe₂As₂

    Get PDF
    Resolving the microscopic pairing mechanism and its experimental identification in unconventional superconductors is among the most vexing problems of contemporary condensed matter physics. We show that Raman spectroscopy provides an avenue towards this aim by probing the structure of the pairing interaction at play in an unconventional superconductor. As we study the spectra of the prototypical Fe-based superconductor Ba1−xKxFe2As2 for 0.22 ≀ x ≀ 0.70 in all symmetry channels, Raman spectroscopy allows us to distill the leading s-wave state. In addition, the spectra collected in the B1g symmetry channel reveal the existence of two collective modes which are indicative of the presence of two competing, yet sub-dominant, pairing tendencies of dx2−y2 symmetry type. A comprehensive functional Renormalization Group and random-phase approximation study on this compound confirms the presence of the two sub-leading channels, and consistently matches the experimental doping dependence of the related modes. The consistency between the experimental observations and the theoretical modeling suggests that spin fluctuations play a significant role in superconducting pairing

    Numerical approach to a model for quasistatic damage with spatial BV-regularization

    Get PDF
    We address a model for rate-independent, partial, isotropic damage in quasistatic small strain linear elasticity, featuring a damage variable with spatial BV-regularization. Discrete solutions are obtained using an alternate time-discrete scheme and the Variable-ADMM algorithm to solve the constrained nonsmooth optimization problem that determines the damage variable at each time step. We prove convergence of the method and show that discrete solutions approximate a semistable energetic solution of the rate-independent system. Moreover, we present our numerical results for two benchmark problems

    First-level trigger systems for LHC experiments

    Get PDF
    We propose to carry out a broad-based programme of R&D on level-1 trigger systems for LHC experiments. We will consider the overall level-1 which coordinates different subtriggers and which interacts with the front end electronics and with the level-2 system. Careful attention will be paid to systems aspects and problems of synchronization within the pipelined processor system. Trigger algorithms for selecting events with high-pt electrons, photons, muons, jets and large missing Et will be evaluated by physics simulation studies. We will study possible implementations of such trigger algorithms in fast electronics by making conceptual design studies and using behavioural simulation models. For critical areas more detailed design studies will be made, and prototypes of some key elements will be constructed and tested. The proposed R&D project builds on existing studies and will complement other R&D projects already funded by the DRDC
    • 

    corecore