111 research outputs found

    Is this it?

    Get PDF

    Oral History, Mobile Curation, and African American Memory in Cleveland\u27s Fairfax and Glenville Neighborhoods

    Get PDF
    Fairfax and Glenville are historic neighborhoods with signal importance in the African American community. Too often these neighborhoods are subjected to a simplistic declension narrative that pins their heyday in the 1920s-50s and traces their decline to the convulsive riots of the late 1960s and the subsequent loss of population to the suburbs as middle-class African Americans mirrored “white flight.” Our team conducted over 40 interviews, created story clips, and curated several new sites for the Cleveland Historical website and mobile application. Our research, rooted in oral history, exposed an important post-1968 counternarrative of resilience. Our oral histories demonstrate a continuing thread of black/white/Jewish collaborative approaches to community issues, particularly in Glenville, as well as the continuing relevance of the “old neighborhoods” for work, play, and worship long after middle-class suburban flight. They also reveal a selective memory that privileges personal connections to the neighborhood through kinship, friendship, faith, and social activism, yielding a “sense of place” that is not always tied to prevailing assumptions about the neighborhoods.https://engagedscholarship.csuohio.edu/u_poster_2014/1007/thumbnail.jp

    Target prediction and a statistical sampling algorithm for RNA-RNA interaction

    Get PDF
    It has been proven that the accessibility of the target sites has a critical influence for miRNA and siRNA. In this paper, we present a program, rip2.0, not only the energetically most favorable targets site based on the hybrid-probability, but also a statistical sampling structure to illustrate the statistical characterization and representation of the Boltzmann ensemble of RNA-RNA interaction structures. The outputs are retrieved via backtracing an improved dynamic programming solution for the partition function based on the approach of Huang et al. (Bioinformatics). The O(N6)O(N^6) time and O(N4)O(N^4) space algorithm is implemented in C (available from \url{http://www.combinatorics.cn/cbpc/rip2.html})Comment: 7 pages, 10 figure

    Beyond the Local Volume. I. Surface Densities of Ultracool Dwarfs in Deep HST/WFC3 Parallel Fields

    Get PDF
    Ultracool dwarf stars and brown dwarfs provide a unique probe of large-scale Galactic structure and evolution; however, until recently spectroscopic samples of sufficient size, depth, and fidelity have been unavailable. Here, we present the identification of 164 M7-T9 ultracool dwarfs in 0.6 deg2 of deep, low-resolution, near-infrared spectroscopic data obtained with the Hubble Space Telescope (HST) Wide Field Camera 3 (WFC3) instrument as part of the WFC3 Infrared Spectroscopic Parallel Survey and the 3D-HST survey. We describe the methodology by which we isolate ultracool dwarf candidates from over 200,000 spectra, and show that selection by machine-learning classification is superior to spectral index-based methods in terms of completeness and contamination. We use the spectra to accurately determine classifications and spectrophotometric distances, the latter reaching to ∌2 kpc for L dwarfs and ∌400 pc for T dwarfs

    Beyond the Local Volume. II. Population Scaleheights and Ages of Ultracool Dwarfs in Deep HST/WFC3 Parallel Fields

    Get PDF
    Ultracool dwarfs (UCDs) represent a significant proportion of stars in the Milky Way, and deep samples of these sources have the potential to constrain the formation history and evolution of low-mass objects in the Galaxy. Until recently, spectral samples have been limited to the local volume (d \u3c 100 pc). Here, we analyze a sample of 164 spectroscopically characterized UCDs identified by Aganze et al. in the Hubble Space Telescope (HST) WFC3 Infrared Spectroscopic Parallel Survey (WISPS) and 3D-HST. We model the observed luminosity function using population simulations to place constraints on scaleheights, vertical velocity dispersions, and population ages as a function of spectral type. Our star counts are consistent with a power-law mass function and constant star formation history for UCDs, with vertical scaleheights of 249 pc for late-M dwarfs, 153 pc for L dwarfs, and 175 pc for T dwarfs. Using spatial and velocity dispersion relations, these scaleheights correspond to disk population ages of 3.6 Gyr for late-M dwarfs, 2.1 Gyr for L dwarfs, and 2.4 Gyr for T dwarfs, which are consistent with prior simulations that predict that L-type dwarfs are on average a younger and less dispersed population. There is an additional 1–2 Gyr systematic uncertainty on these ages due to variances in age-velocity relations. We use our population simulations to predict the UCD yield in the James Webb Space Telescope PASSAGES survey, a similar and deeper survey to WISPS and 3D-HST, and find that it will produce a comparably sized UCD sample, albeit dominated by thick disk and halo sources

    Beyond the Local Volume II: Population Scaleheights and Ages of Ultracool Dwarfs in Deep HST/WFC3 Parallel Fields

    Get PDF
    Ultracool dwarfs represent a significant proportion of stars in the Milky Way,and deep samples of these sources have the potential to constrain the formation history and evolution of low-mass objects in the Galaxy. Until recently, spectral samples have been limited to the local volume (d<100 pc). Here, we analyze a sample of 164 spectroscopically-characterized ultracool dwarfs identified by Aganze et al. (2022) in the Hubble Space Telescope WFC3 Infrared Spectroscopic Parallel (WISP) Survey and 3D-HST. We model the observed luminosity function using population simulations to place constraints on scaleheights, vertical velocity dispersions and population ages as a function of spectral type. Our star counts are consistent with a power-law mass function and constant star formation history for ultracool dwarfs, with vertical scaleheights 249−61+48_{-61}^{+48} pc for late M dwarfs, 153−30+56_{-30}^{+56} pc for L dwarfs, and 175−56+149_{-56}^{+149} pc for T dwarfs. Using spatial and velocity dispersion relations, these scaleheights correspond to disk population ages of 3.6−1.0+0.8_{-1.0}^{+0.8} for late M dwarfs, 2.1−0.5+0.9_{-0.5}^{+0.9} Gyr for L dwarfs, and 2.4−0.8+2.4_{-0.8}^{+2.4} Gyr for T dwarfs, which are consistent with prior simulations that predict that L-type dwarfs are on average a younger and less dispersed population. There is an additional 1-2 Gyr systematic uncertainty on these ages due to variances in age-velocity relations. We use our population simulations to predict the UCD yield in the JWST PASSAGES survey, a similar and deeper survey to WISPS and 3D-HST, and find that it will produce a comparably-sized UCD sample, albeit dominated by thick disk and halo sources.Comment: submitted to Ap

    Deep extragalactic visible legacy survey (DEVILS): the emergence of bulges and decline of disc growth since z = 1

    Get PDF
    We present a complete structural analysis of the ellipticals (E), diffuse bulges (dB), compact bulges (cB), and discs (D) within a redshift range 0 \u3c z \u3c 1, and stellar mass log10(M*/M⊙) ≄ 9.5 volume-limited sample drawn from the combined DEVILS and HST-COSMOS region. We use the PROFIT code to profile over ∌35 000 galaxies for which visual classification into single or double component was pre-defined in Paper-I. Over this redshift range, we see a growth in the total stellar mass density (SMD) of a factor of 1.5. At all epochs we find that the dominant structure, contributing to the total SMD, is the disc, and holds a fairly constant share of ∌60 per cent role= presentation style= box-sizing: border-box; margin: 0px; padding: 0px; border: 0px; font-variant: inherit; font-stretch: inherit; line-height: normal; font-family: inherit; vertical-align: baseline; display: inline; word-spacing: normal; overflow-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; position: relative; \u3e∌60 per cent∌60 per cent of the total SMD from z = 0.8 to z = 0.2, dropping to ∌30 per cent role= presentation style= box-sizing: border-box; margin: 0px; padding: 0px; border: 0px; font-variant: inherit; font-stretch: inherit; line-height: normal; font-family: inherit; vertical-align: baseline; display: inline; word-spacing: normal; overflow-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; position: relative; \u3e∌30 per cent∌30 per cent at z = 0.0 (representing ∌33 per cent role= presentation style= box-sizing: border-box; margin: 0px; padding: 0px; border: 0px; font-variant: inherit; font-stretch: inherit; line-height: normal; font-family: inherit; vertical-align: baseline; display: inline; word-spacing: normal; overflow-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; position: relative; \u3e∌33 per cent∌33 per cent decline in the total disc SMD). Other classes (E, dB, and cB) show steady growth in their numbers and integrated stellar mass densities. By number, the most dramatic change across the full mass range is in the growth of diffuse bulges. In terms of total SMD, the biggest gain is an increase in massive elliptical systems, rising from 20 per cent at z = 0.8 to equal that of discs at z = 0.0 (30 per cent) representing an absolute mass growth of a factor of 2.5. Overall, we see a clear picture of the emergence and growth of all three classes of spheroids over the past 8 Gyr, and infer that in the later half of the Universe’s timeline spheroid-forming processes and pathways (secular evolution, mass-accretion, and mergers) appear to dominate mass transformation over quiescent disc growth

    The Astropy Problem

    Get PDF
    The Astropy Project (http://astropy.org) is, in its own words, "a community effort to develop a single core package for Astronomy in Python and foster interoperability between Python astronomy packages." For five years this project has been managed, written, and operated as a grassroots, self-organized, almost entirely volunteer effort while the software is used by the majority of the astronomical community. Despite this, the project has always been and remains to this day effectively unfunded. Further, contributors receive little or no formal recognition for creating and supporting what is now critical software. This paper explores the problem in detail, outlines possible solutions to correct this, and presents a few suggestions on how to address the sustainability of general purpose astronomical software
    • 

    corecore