77 research outputs found
Cholesterol transport and steroidogenesis by the corpus luteum
The synthesis of progesterone by the corpus luteum is essential for the establishment and maintenance of early pregnancy. Regulation of luteal steroidogenesis can be broken down into three major events; luteinization (i.e., conversion of an ovulatory follicle), luteal regression, and pregnancy induced luteal maintenance/rescue. While the factors that control these events and dictate the final steroid end products are widely varied among different species, the composition of the corpus luteum (luteinized thecal and granulosa cells) and the enzymes and proteins involved in the steroidogenic pathway are relatively similar among all species. The key factors involved in luteal steroidogenesis and several new exciting observations regarding regulation of luteal steroidogenic function are discussed in this review
Mammalian oocytes are targets for prostaglandin E2 (PGE2) action
<p>Abstract</p> <p>Background</p> <p>The ovulatory gonadotropin surge increases synthesis of prostaglandin E2 (PGE2) by the periovulatory follicle. PGE2 actions on granulosa cells are essential for successful ovulation. The aim of the present study is to determine if PGE2 also acts directly at the oocyte to regulate periovulatory events.</p> <p>Methods</p> <p>Oocytes were obtained from monkeys and mice after ovarian follicular stimulation and assessed for PGE2 receptor mRNA and proteins. Oocytes were cultured with vehicle or PGE2 and assessed for cAMP generation, resumption of meiosis, and in vitro fertilization.</p> <p>Results</p> <p>Germinal vesicle intact (GV) oocytes from both monkeys and mice expressed mRNA for the PGE2 receptors EP2, EP3, and EP4. EP2 and EP4 proteins were detected by confocal microscopy in oocytes of both species. Monkey and mouse oocytes responded to PGE2 as well as agonists selective for EP2 and EP4 receptors with elevated cAMP, consistent with previous identification of EP2 and EP4 as Gαs/adenylyl cyclase coupled receptors. Incubation of mouse GV stage oocytes with PGE2 delayed oocyte nuclear maturation in vitro, but PGE2 treatment did not alter the percentage of mouse oocytes that fertilized successfully. PGE2 treatment also decreased the percentage of monkey oocytes that resumed meiosis in vitro. In contrast with mouse oocytes, the percentage of monkey oocytes which fertilized in vitro was lower after treatment with PGE2. Monkey oocytes with intact cumulus showed delayed nuclear maturation, but fertilization rate was not affected by PGE2 treatment.</p> <p>Conclusions</p> <p>Monkey and mouse oocytes express functional PGE2 receptors. PGE2 acts directly at mammalian oocytes to delay nuclear maturation. Surrounding cumulus cells modulate the effect of PGE2 to alter subsequent fertilization.</p
Assessment of Dose-dependent Endocrine and Immune Responses to Simulated Ionizing Radiation
The hypothalamic-pituitary-adrenal axis can regulate immune responses to counteract stressful stimuli in maintaining homeostasis within the body. Cosmic ionizing radiation is an innate risk within the space environment and it is known to cause direct DNA damage and indirectly impact cellular function, transduction, and communication processes. Assessment of different physiological systems and their interactions are important to consider for mitigation strategies in spaceflight. The degree of ionizing radiation and relative biological effectiveness is an open question as it pertains to immune and endocrine responses. Therefore, this study will assess the dose-dependent responses of immunity and adrenal function to cosmic ionizing radiation. For this, male and female C57 BL/6J mice were exposed to simulated, simplified five-ion galactic cosmic ray (GCR) radiation at 5cGy, 15cGy, and 50cGy. Blood and tissues were collected two-weeks post exposure and inflammatory biomarkers and hormone biochemical pathways were characterized by whole transcriptome RNA sequencing. Results displayed differential transcriptomic profiles for each condition and sex, indicating complex responses and networks are generated from different doses of ionizing radiation. Careful consideration of unique profiles highlights the current need for personalized medicine requirements for astronauts exposed to similar doses on exploration missions. Supported by the NASA Human Research Program (HRP) Human Factors Behavioral Performance Element Grant 18 18FLAG 2 0028 and Embry-Riddle Aeronautical University startup funding
Characterization and Small RNA Content of Extracellular Vesicles in Follicular Fluid of Developing Bovine Antral Follicles.
Exosomes and microvesicles (i.e., extracellular vesicles: EVs) have been identified within ovarian follicular fluid and recent evidence suggests that EVs are able to elicit profound effects on ovarian cell function. While existence of miRNA within EVs has been reported, whether EV size and concentration as well as their cargos (i.e., proteins and RNA) change during antral follicle growth remains unknown. Extracellular vesicles isolated from follicular fluid of small, medium and large bovine follicles were similar in size, while concentration of EVs decreased progressively as follicle size increased. Electron microscopy indicated a highly purified population of the lipid bilayer enclosed vesicles that were enriched in exosome biomarkers including CD81 and Alix. Small RNA sequencing identified a large number of known and novel miRNAs that changed in the EVs of different size follicles. Ingenuity Pathway Analysis (IPA) indicated that miRNA abundant in small follicle EV preparations were associated with cell proliferation pathways, while those miRNA abundant in large follicle preparations were related to inflammatory response pathways. These studies are the first to demonstrate that EVs change in their levels and makeup during antral follicle development and point to the potential for a unique vesicle-mediated cell-to-cell communication network within the ovarian follicle
A detailed analysis of next generation sequencing reads of microRNA expression in Barrettâs Esophagus: absolute versus relative quantification
Background
Next generation sequencing (NGS) is a state of the art technology for microRNA (miRNA) analysis. The quantitative interpretation of the primary output of NGS i.e. the read counts for a miRNA sequence that can vary by several orders of magnitude (1 to 107) remains incompletely understood.
Findings
NGS (SOLiD 3 technology) was performed on biopsies from 6 Barrettâs esophagus (BE) and 5 Gastroesophageal Reflux Disease (GERD) patients. Read sequences were aligned to miRBase 18.0. Differential expression analysis was adjusted for false discovery rate of 5%. Quantitative real-time polymerase chain reaction (qRT-PCR) was performed for 36 miRNA in a validation cohort of 47 patients (27 BE and 20 GERD). Correlation coefficients, accuracy, precision and recall of NGS compared to qRT-PCR were calculated. Increase in NGS reads was associated with progressively lower Cq values, pâ1000 vs. 500 vs. 100 vs. <100). The accuracy, precision and recall of NGS to label a miRNA as differentially expressed were 0.71, 0.88 and 0.74 respectively.
Conclusion
Absolute NGS reads correlated modestly with qRT-PCR but fold changes correlated highly. NGS is robust at relative but not absolute quantification of miRNA levels and accurate for high-throughput identification of differentially expressed miRNA.The current work was supported by a pilot grant from the American Cancer Society (AB and LKC), the American College of Gastroenterology Junior Faculty Development Award (AB) and Hall Family Foundation (LKC)
MicroRNA Expression can be a Promising Strategy for the Detection of Barrett's Esophagus: A Pilot Study
Clinical and Translational Gastroenterology is an open-access journal published by Nature Publishing Group.Patient outcomes for esophageal adenocarcinoma (EAC) have not improved despite huge advances in endoscopic therapy because cancers are being diagnosed late. Barrett's esophagus (BE) is the primary precursor lesion for EAC, and thus the non-endoscopic molecular diagnosis of BE can be an important approach to improve EAC outcomes if robust biomarkers for timely diagnosis are identified. MicroRNAs (miRNAs) are tissue-specific novel biomarkers that regulate gene expression and may satisfy this requirement.The current work was supported by a pilot grant from the American Cancer Society (A.B. and L.K.C.), the American College of Gastroenterology Junior Faculty Development Award (A.B.) and grants from Hall Family Foundation (L.K.C.) and Kansas IDeA Network of Biomedical Research Excellence (A.B., L.K.C.). None of the funding bodies had any role in design, in the collection, analysis and interpretation of data; in the writing of the manuscript; and in the decision to submit the manuscript for publication
Discovery and Validation of Barrett's Esophagus MicroRNA Transcriptome by Next Generation Sequencing
Objective: Barrett's esophagus (BE) is transition from squamous to columnar mucosa as a result of gastroesophageal reflux disease (GERD). The role of microRNA during this transition has not been systematically studied.
Design: For initial screening, total RNA from 5 GERD and 6 BE patients was size fractionated. RNA <70 nucleotides was subjected to SOLiD 3 library preparation and next generation sequencing (NGS). Bioinformatics analysis was performed using R package âDEseqâ. A p value<0.05 adjusted for a false discovery rate of 5% was considered significant. NGS-identified miRNA were validated using qRT-PCR in an independent group of 40 GERD and 27 BE patients. MicroRNA expression of human BE tissues was also compared with three BE cell lines.
Results: NGS detected 19.6 million raw reads per sample. 53.1% of filtered reads mapped to miRBase version 18. NGS analysis followed by qRT-PCR validation found 10 differentially expressed miRNA; several are novel (-708-5p, -944, -224-5p and -3065-5p). Up- or down- regulation predicted by NGS was matched by qRT-PCR in every case. Human BE tissues and BE cell lines showed a high degree of concordance (70â80%) in miRNA expression. Prediction analysis identified targets that mapped to developmental signaling pathways such as TGFÎČ and Notch and inflammatory pathways such as toll-like receptor signaling and TGFÎČ. Cluster analysis found similarly regulated (up or down) miRNA to share common targets suggesting coordination between miRNA.
Conclusion: Using highly sensitive next-generation sequencing, we have performed a comprehensive genome wide analysis of microRNA in BE and GERD patients. Differentially expressed miRNA between BE and GERD have been further validated. Expression of miRNA between BE human tissues and BE cell lines are highly correlated. These miRNA should be studied in biological models to further understand BE development
The Cebpd (C/EBPÎŽ) Gene Is Induced by Luteinizing Hormones in Ovarian Theca and Interstitial Cells But Is Not Essential for Mouse Ovary Function
The CCAAT/enhancer binding protein (CEBP) family of transcription factors includes five genes. In the ovary, both Cebpa and Cebpb are essential for granulosa cell function. In this study we have explored the role of the Cebpd gene in ovarian physiology by expression and functional studies. Here we report that Cebpd (C/EBPÎŽ) is expressed in the mouse ovary in a highly restricted temporal and spatial pattern. In response to luteinizing hormone (LH/hCG), CEBPD expression is transiently induced in interstitial cells and in theca cells of follicles from the primary to pre-ovulatory stage, and overlaps in part with expression of the alpha-smooth muscle actin protein. Efficient down-regulation of CEBPD was dependent on a functional Cebpb gene. Proliferating human theca cells in culture also express Cebpd. Cells from patients with polycystic ovarian syndrome (PCOS) exhibited higher Cebpd expression levels. However, deletion of Cebpd in mice had no overt effect on ovarian physiology and reproductive function. Very little is known at present about the molecular mechanisms underlying theca/interstitial cell functions. The expression pattern of CEBPD reported here identifies a novel functional unit of mouse theca cells of primary through tertiary follicles responding to LH/hCG together with a subset of interstitial cells. This acute stimulation of CEBPD expression may be exploited to further characterize the hormonal regulation and function of theca and interstitial cells
School Effects on the Wellbeing of Children and Adolescents
Well-being is a multidimensional construct, with psychological, physical and social components. As theoretical basis to help understand this concept and how it relates to school, we propose the Self-Determination Theory, which contends that self-determined motivation and personality integration, growth and well-being are dependent on a healthy balance of three innate psychological needs of autonomy, relatedness and competence. Thus, current indicators involve school effects on childrenâs well-being, in many diverse modalities which have been explored. Some are described in this chapter, mainly: the importance of peer relationships; the benefits of friendship; the effects of schools in conjunction with some forms of family influence; the school climate in terms of safety and physical ecology; the relevance of the teacher input; the school goal structure and the implementation of cooperative learning. All these parameters have an influence in promoting optimal functioning among children and increasing their well-being by meeting the above mentioned needs. The empirical support for the importance of schools indicates significant small effects, which often translate into important real-life effects as it is admitted at present. The conclusion is that schools do make a difference in childrenâs peer relationships and well-being
- âŠ