43 research outputs found

    The Stellar Imager (SI) - A Mission to Resolve Stellar Surfaces, Interiors, and Magnetic Activity

    Get PDF
    The Stellar Imager (SI) is a space-based, UV/Optical Interferometer (UVOI) designed to enable 0.1 milli-arcsecond (mas) spectral imaging of stellar surfaces and of the Universe in general. It will also probe via asteroseismology flows and structures in stellar interiors. SI will enable the development and testing of a predictive dynamo model for the Sun, by observing patterns of surface activity and imaging of the structure and differential rotation of stellar interiors in a population study of Sun-like stars to determine the dependence of dynamo action on mass, internal structure and flows, and time. SI's science focuses on the role of magnetism in the Universe and will revolutionize our understanding of the formation of planetary systems, of the habitability and climatology of distant planets, and of many magnetohydrodynamically controlled processes in the Universe. SI is a "LandmarklDiscovery Mission" in the 2005 Heliophysics Roadmap, an implementation of the UVOI in the 2006 Astrophysics Strategic Plan, and a NASA Vision Mission ("NASA Space Science Vision Missions" (2008), ed. M. Allen). We present here the science goals of the SI Mission, a mission architecture that could meet those goals, and the technology development needed to enable this missio

    Kepler-93b: A Terrestrial World Measured to within 120 km, and a Test Case for a New Spitzer Observing Mode

    Get PDF
    We present the characterization of the Kepler-93 exoplanetary system, based on three years of photometry gathered by the Kepler spacecraft. The duration and cadence of the Kepler observations, in tandem with the brightness of the star, enable unusually precise constraints on both the planet and its host. We conduct an asteroseismic analysis of the Kepler photometry and conclude that the star has an average density of 1.652+/-0.006 g/cm^3. Its mass of 0.911+/-0.033 M_Sun renders it one of the lowest-mass subjects of asteroseismic study. An analysis of the transit signature produced by the planet Kepler-93b, which appears with a period of 4.72673978+/-9.7x10^-7 days, returns a consistent but less precise measurement of the stellar density, 1.72+0.02-0.28 g/cm^3. The agreement of these two values lends credence to the planetary interpretation of the transit signal. The achromatic transit depth, as compared between Kepler and the Spitzer Space Telescope, supports the same conclusion. We observed seven transits of Kepler-93b with Spitzer, three of which we conducted in a new observing mode. The pointing strategy we employed to gather this subset of observations halved our uncertainty on the transit radius ratio R_p/R_star. We find, after folding together the stellar radius measurement of 0.919+/-0.011 R_Sun with the transit depth, a best-fit value for the planetary radius of 1.481+/-0.019 R_Earth. The uncertainty of 120 km on our measurement of the planet's size currently renders it one of the most precisely measured planetary radii outside of the Solar System. Together with the radius, the planetary mass of 3.8+/-1.5 M_Earth corresponds to a rocky density of 6.3+/-2.6 g/cm^3. After applying a prior on the plausible maximum densities of similarly-sized worlds between 1--1.5 R_Earth, we find that Kepler-93b possesses an average density within this group.Comment: 20 pages, 9 figures, accepted for publication in Ap

    Solar-like oscillations in the G2 subgiant beta Hydri from dual-site observations

    Full text link
    We have observed oscillations in the nearby G2 subgiant star beta Hyi using high-precision velocity observations obtained over more than a week with the HARPS and UCLES spectrographs. The oscillation frequencies show a regular comb structure, as expected for solar-like oscillations, but with several l=1 modes being strongly affected by avoided crossings. The data, combined with those we obtained five years earlier, allow us to identify 28 oscillation modes. By scaling the large frequency separation from the Sun, we measure the mean density of beta Hyi to an accuracy of 0.6%. The amplitudes of the oscillations are about 2.5 times solar and the mode lifetime is 2.3 d. A detailed comparison of the mixed l=1 modes with theoretical models should allow a precise estimate of the age of the star.Comment: 13 pages, 14 figures, accepted by ApJ. Fixed minor typo (ref to Fig 14

    Detection of solar-like oscillations from Kepler photometry of the open cluster NGC 6819

    Get PDF
    Asteroseismology of stars in clusters has been a long-sought goal because the assumption of a common age, distance and initial chemical composition allows strong tests of the theory of stellar evolution. We report results from the first 34 days of science data from the Kepler Mission for the open cluster NGC 6819 -- one of four clusters in the field of view. We obtain the first clear detections of solar-like oscillations in the cluster red giants and are able to measure the large frequency separation and the frequency of maximum oscillation power. We find that the asteroseismic parameters allow us to test cluster-membership of the stars, and even with the limited seismic data in hand, we can already identify four possible non-members despite their having a better than 80% membership probability from radial velocity measurements. We are also able to determine the oscillation amplitudes for stars that span about two orders of magnitude in luminosity and find good agreement with the prediction that oscillation amplitudes scale as the luminosity to the power of 0.7. These early results demonstrate the unique potential of asteroseismology of the stellar clusters observed by Kepler.Comment: 5 pages, 4 figures, accepted by ApJ (Lett.

    The Occurrence of Rocky Habitable Zone Planets Around Solar-Like Stars from Kepler Data

    Get PDF
    We present occurrence rates for rocky planets in the habitable zones (HZ) of main-sequence dwarf stars based on the Kepler DR25 planet candidate catalog and Gaia-based stellar properties. We provide the first analysis in terms of star-dependent instellation flux, which allows us to track HZ planets. We define η\eta_\oplus as the HZ occurrence of planets with radius between 0.5 and 1.5 RR_\oplus orbiting stars with effective temperatures between 4800 K and 6300 K. We find that η\eta_\oplus for the conservative HZ is between 0.370.21+0.480.37^{+0.48}_{-0.21} (errors reflect 68\% credible intervals) and 0.600.36+0.900.60^{+0.90}_{-0.36} planets per star, while the optimistic HZ occurrence is between 0.580.33+0.730.58^{+0.73}_{-0.33} and 0.880.51+1.280.88^{+1.28}_{-0.51} planets per star. These bounds reflect two extreme assumptions about the extrapolation of completeness beyond orbital periods where DR25 completeness data are available. The large uncertainties are due to the small number of detected small HZ planets. We find similar occurrence rates using both a Poisson likelihood Bayesian analysis and Approximate Bayesian Computation. Our results are corrected for catalog completeness and reliability. Both completeness and the planet occurrence rate are dependent on stellar effective temperature. We also present occurrence rates for various stellar populations and planet size ranges. We estimate with 95%95\% confidence that, on average, the nearest HZ planet around G and K dwarfs is about 6 pc away, and there are about 4 HZ rocky planets around G and K dwarfs within 10 pc of the Sun.Comment: To appear in The Astronomical Journa

    The Occurrence of Rocky Habitable-zone Planets around Solar-like Stars from Kepler Data

    Get PDF
    We present the occurrence rates for rocky planets in the habitable zones (HZs) of main-sequence dwarf stars based on the Kepler DR25 planet candidate catalog and Gaia-based stellar properties. We provide the first analysis in terms of star-dependent instellation flux, which allows us to track HZ planets. We define η⊕ as the HZ occurrence of planets with radii between 0.5 and 1.5 R⊕ orbiting stars with effective temperatures between 4800 and 6300 K. We find that η⊕ for the conservative HZ is between 0.37^(+0.48)_(−0.21) (errors reflect 68% credible intervals) and 0.60^(+0.90)_(−0.36) planets per star, while the optimistic HZ occurrence is between 0.58^(+0.73)_(−0.33) and 0.88^(+1.28)_(−0.51) planets per star. These bounds reflect two extreme assumptions about the extrapolation of completeness beyond orbital periods where DR25 completeness data are available. The large uncertainties are due to the small number of detected small HZ planets. We find similar occurrence rates between using Poisson likelihood Bayesian analysis and using Approximate Bayesian Computation. Our results are corrected for catalog completeness and reliability. Both completeness and the planet occurrence rate are dependent on stellar effective temperature. We also present occurrence rates for various stellar populations and planet size ranges. We estimate with 95% confidence that, on average, the nearest HZ planet around G and K dwarfs is ~6 pc away and there are ~4 HZ rocky planets around G and K dwarfs within 10 pc of the Sun

    Characteristics of Kepler planetary candidates based on the first data set

    Get PDF
    In the spring of 2009, the Kepler Mission commenced high-precision photometry on nearly 156,000 stars to determine the frequency and characteristics of small exoplanets, conduct a guest observer program, and obtain asteroseismic data on a wide variety of stars. On 2010 June 15, the Kepler Mission released most of the data from the first quarter of observations. At the time of this data release, 705 stars from this first data set have exoplanet candidates with sizes from as small as that of Earth to larger than that of Jupiter. Here we give the identity and characteristics of 305 released stars with planetary candidates. Data for the remaining 400 stars with planetary candidates will be released in 2011 February. More than half the candidates on the released list have radii less than half that of Jupiter. Five candidates are present in and near the habitable zone; two near super-Earth size, and three bracketing the size of Jupiter. The released stars also include five possible multi-planet systems. One of these has two Neptune-size (2.3 and 2.5 Earth radius) candidates with near-resonant periods

    TESS Discovery of an Ultra-short-period Planet around the Nearby M Dwarf LHS 3844

    Get PDF
    Data from the newly commissioned Transiting Exoplanet Survey Satellite has revealed a 'hot Earth' around LHS 3844, an M dwarf located 15 pc away. The planet has a radius of R ⊕ and orbits the star every 11 hr. Although the existence of an atmosphere around such a strongly irradiated planet is questionable, the star is bright enough (I = 11.9, K = 9.1) for this possibility to be investigated with transit and occultation spectroscopy. The star's brightness and the planet's short period will also facilitate the measurement of the planet's mass through Doppler spectroscopy

    Masses, radii, and orbits of small Kepler planets: the transition from gaseous to rocky planets

    Get PDF
    We report on the masses, sizes, and orbits of the planets orbiting 22 Kepler stars. There are 49 planet candidates around these stars, including 42 detected through transits and 7 revealed by precise Doppler measurements of the host stars. Based on an analysis of the Kepler brightness measurements, along with high-resolution imaging and spectroscopy, Doppler spectroscopy, and (for 11 stars) asteroseismology, we establish low false-positive probabilities (FPPs) for all of the transiting planets (41 of 42 have an FPP under 1%), and we constrain their sizes and masses. Most of the transiting planets are smaller than three times the size of Earth. For 16 planets, the Doppler signal was securely detected, providing a direct measurement of the planet's mass. For the other 26 planets we provide either marginal mass measurements or upper limits to their masses and densities; in many cases we can rule out a rocky composition. We identify six planets with densities above 5 g cm-3, suggesting a mostly rocky interior for them. Indeed, the only planets that are compatible with a purely rocky composition are smaller than 2 R ⊕. Larger planets evidently contain a larger fraction of low-density material (H, He, and H2O)

    Underlying Event measurements in pp collisions at s=0.9 \sqrt {s} = 0.9 and 7 TeV with the ALICE experiment at the LHC

    Full text link
    corecore