25,146 research outputs found

    Transitions in non-conserving models of Self-Organized Criticality

    Full text link
    We investigate a random--neighbours version of the two dimensional non-conserving earthquake model of Olami, Feder and Christensen [Phys. Rev. Lett. {\bf 68}, 1244 (1992)]. We show both analytically and numerically that criticality can be expected even in the presence of dissipation. As the critical level of conservation, αc\alpha_c, is approached, the cut--off of the avalanche size distribution scales as Ο∌(αc−α)−3/2\xi\sim(\alpha_c-\alpha)^{-3/2}. The transition from non-SOC to SOC behaviour is controlled by the average branching ratio σ\sigma of an avalanche, which can thus be regarded as an order parameter of the system. The relevance of the results are discussed in connection to the nearest-neighbours OFC model (in particular we analyse the relevance of synchronization in the latter).Comment: 8 pages in latex format; 5 figures available upon reques

    The Temperature Evolution of the Out-of-Plane Correlation Lengths of Charge-Stripe Ordered La(1.725)Sr(0.275)NiO(4)

    Full text link
    The temperature dependence of the magnetic order of stripe-ordered La(1.725)Sr(0.275)NiO(4) is investigated by neutron diffraction. Upon cooling, the widths if the magnetic Bragg peaks are observed to broaden. The degree of broadening is found to be very different for l = odd-integer and l = even-integer magnetic peaks. We argue that the observed behaviour is a result of competition between magnetic and charge order.Comment: 3 figure

    Correlations and invariance of seismicity under renormalization-group transformations

    Get PDF
    The effect of transformations analogous to those of the real-space renormalization group are analyzed for the temporal occurrence of earthquakes. The distribution of recurrence times turns out to be invariant under such transformations, for which the role of the correlations between the magnitudes and the recurrence times are fundamental. A general form for the distribution is derived imposing only the self-similarity of the process, which also yields a scaling relation between the Gutenberg-Richter b-value, the exponent characterizing the correlations, and the recurrence-time exponent. This approach puts the study of the structure of seismicity in the context of critical phenomena.Comment: Short paper. I'll be grateful to get some feedbac

    Hawking Radiation for Non-minimally Coupled Matter from Generalized 2D Black Hole Models

    Get PDF
    It is well known that spherically symmetric reduction of General Relativity (SSG) leads to non-minimally coupled scalar matter. We generalize (and correct) recent results to Hawking radiation for a class of dilaton models which share with the Schwarzschild black hole non-minimal coupling of scalar fields and the basic global structure. An inherent ambiguity of such models (if they differ from SSG) is discussed. However, for SSG we obtain the rather disquieting result of a negative Hawking flux at infinity, if the usual recipe for such calculations is applied.Comment: 8 page

    Power filtration of CMB observational data

    Full text link
    We propose a power filter Gp for linear reconstruction of the CMB signal from observational maps. This Gp filter preserves the power spectrum of the CMB signal in contrast to the Wiener filter which diminishes the power spectrum of the reconstructed CMB signal. We demonstrate how peak statistics and a cluster analysis can be used to estimate the probability of the presence of a CMB signal in observational records. The efficiency of the Gp filter is demonstrated on a toy model of an observational record consisting of a CMB signal and noise in the form of foreground point sources.Comment: 17 pages; 4 figures; submitted to International Journal of Modern Physic

    Mode analysis of numerical geodynamo models

    Full text link
    It has been suggested in Hoyng (2009) that dynamo action can be analysed by expansion of the magnetic field into dynamo modes and statistical evaluation of the mode coefficients. We here validate this method by analysing a numerical geodynamo model and comparing the numerically derived mean mode coefficients with the theoretical predictions. The model belongs to the class of kinematically stable dynamos with a dominating axisymmetric, antisymmetric with respect to the equator and non-periodic fundamental dynamo mode. The analysis requires a number of steps: the computation of the so-called dynamo coefficients, the derivation of the temporally and azimuthally averaged dynamo eigenmodes and the decomposition of the magnetic field of the numerical geodynamo model into the eigenmodes. For the determination of the theoretical mode excitation levels the turbulent velocity field needs to be projected on the dynamo eigenmodes. We compare the theoretically and numerically derived mean mode coefficients and find reasonably good agreement for most of the modes. Some deviation might be attributable to the approximation involved in the theory. Since the dynamo eigenmodes are not self-adjoint a spectral interpretation of the eigenmodes is not possible

    Evidence for ultramafic lavas on Syrtis Major

    Get PDF
    Pyroxene compositions from ISM data compared with pyroxene compositions of Apollo 12 pigeonite basalt, Shergotite meteorite, and pyroxenitic komatiite show that the Syrtis Major volcanic materials are consistent with pyroxenitic komatiite. Pyroxenitic komatiite is significant for the earth because it contains a large amount of MgO, implying generation under unique circumstances compared to typical basaltic compositions

    High-precision abundances of elements in Kepler LEGACY stars. Verification of trends with stellar age

    Full text link
    HARPS-N spectra with S/N > 250 and MARCS model atmospheres were used to derive abundances of C, O, Na, Mg, Al, Si, Ca, Ti, Cr, Fe, Ni, Zn, and Y in ten stars from the Kepler LEGACY sample (including the binary pair 16 Cyg A and B) selected to have metallicities in the range -0.15 < [Fe/H] < +0.15 and ages between 1 and 7 Gyr. Stellar gravities were obtained from seismic data and effective temperatures were determined by comparing non-LTE iron abundances derived from FeI and FeII lines. Available non-LTE corrections were also applied when deriving abundances of the other elements. The results support the [X/Fe]-age relations previously found for solar twins. [Mg/Fe], [Al/Fe], and [Zn/Fe] decrease by ~0.1 dex over the lifetime of the Galactic thin disk due to delayed contribution of iron from Type Ia supernovae relative to prompt production of Mg, Al, and Zn in Type II supernovae. [Y/Mg] and [Y/Al], on the other hand, increase by ~0.3 dex, which can be explained by an increasing contribution of s-process elements from low-mass AGB stars as time goes on. The trends of [C/Fe] and [O/Fe] are more complicated due to variations of the ratio between refractory and volatile elements among stars of similar age. Two stars with about the same age as the Sun show very different trends of [X/H] as a function of elemental condensation temperature Tc and for 16 Cyg, the two components have an abundance difference, which increases with Tc. These anomalies may be connected to planet-star interactions.Comment: 13 pages with 7 figures. Accepted for publication in A&
    • 

    corecore