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White matter hyperintensities and within-person variability in community-dwelling adults 

aged 60 to 64 years 

 

Abstract 

Estimates of white matter hyperintensities (WMH) derived from T2-weighted MRI were 

investigated in relation to cognitive performance in 469 healthy community-dwelling adults 

aged 60 to 64 years. Frontal lobe WMH but not WMH from other brain regions (temporal, 

parietal, and occipital lobes, anterior and posterior horn, periventricular body) were associated 

with elevated within-person reaction time (RT) variability (trial to trial fluctuations in RT 

performance) but not performance on several other cognitive tasks including psychomotor 

speed, memory, and global cognition. The findings are consistent with the view that elevated 

within-person variability is related to neurobiological disturbance, and that attentional 

mechanisms supported by the frontal cortex play a key role in this type of variability.  

 

Key words: White matter hyperintensities; MRI; cognitive function; Within-person 

variability; Intraindividual variability. 
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Within-person cognitive variability refers to within-session, or session-to-session, variability 

in cognitive performance. Here, we focus on the trial-to-trial response variability of reaction 

times (RT) as the measure has recently received considerable research interest due to its 

potential as a neuropsychological diagnostic and assessment tool in clinical contexts, and 

possible ability to provide valuable theoretical insights into cognitive processes in aging and 

clinical populations. A major reason for this research interest is the suggestion that increased 

within-person variability reflects neurobiological disturbance leading to some compromise of 

central nervous system integrity (Hendrickson, 1982; Hultsch & MacDonald, 2004; Li & 

Lindenberger, 1999). Consistent with this possibility, behavioral studies show within-person 

variability to be greater with older age (e.g., Anstey, 1999; Bunce, MacDonald & Hultsch, 

2004; Hultsch, MacDonald, & Dixon, 2002; MacDonald, Hultsch, & Bunce, 2006; 

Nessleroade & Salthouse, 2004; West, Murphy, Armilio, Craik, & Stuss, 2002; Wegesin & 

Stern, 2004), mild cognitive impairment or mild dementia (Christensen, Dear, Anstey, 

Parslow, Sachdev, & Jorm, 2005; Hultsch, MacDonald, Hunter, Levy-Bencheton, & Strauss, 

2000; Knotek, Bayles, & Kaszniak, 1990), traumatic brain injury (e.g., Bleiberg, Garmoe, 

Halpern, Reeves, & Nadler, 1997; Stuss, Murphy, Binns, & Alexander, 2003; Stuss, Pogue, 

Buckle, & Bondar, 1994), Parkinson‟s disease (Burton, Strauss, Hultsch, Moll, & Hunter, 

2006), and epilepsy (Bruhn & Parsons, 1977). Moreover, these effects have been found in 

several cognitive domains including psychomotor performance (e.g., Anstey, 1999; Bunce et 

al., 2004), executive function (e.g., West et al., 2002), sustained attention (MacDonald et al., 

2006), and memory (e.g., Hultsch et al., 2000). Although this research provides considerable 

support for the suggestion that within-person variability reflects neurobiological integrity, a 

major limitation is that virtually all of the evidence is behavioral. Two our knowledge, only 

two brain-imaging studies have investigated within-person variability. The first (Bellgrove, 

Hester, & Garavan, 2004), found a significant association between within-person variability 

in a go/no-go response paradigm and task-related frontal activations as measured by 

functional magnetic resonance imaging (MRI). This study, however, was conducted in young 

persons only. The second study, from the present group (Anstey, Mack, Christensen et al., in 

press), found that intraindividual variability was associated with corpus collosum size in 

individuals with mild cognitive disorders, but not in a normative sample. 

It is this paucity of research that motivates the present study. Specifically, we investigate 

the association between white matter hyperintensities (WMH) and within-person variability in 

a psychomotor task among healthy community-dwelling adults aged 60 to 64 years. WMH 
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refer to the white matter lesions that manifest as high signal intensities on T2-weighted MRI. 

White matter is of particular interest here as the nerve structures therein consist mainly of 

myelinated axons that form connective pathways to and from the brain, and also between 

different brain structures. The myelin around the axons provides an insulating sheath that 

increases the speed and efficiency of conduction (Kivipelto, Soininen, & Tuomilehto, 2002). 

Therefore, damage to these structures, as indicated by the presence of WMHs, is likely to 

affect the efficiency of information transfer within, and to and from, the brain. As the level of 

WMH increases, subtle changes in cognitive function are likely to occur, such as slowed RTs 

and greater within-person variability. Within the context of cognitive aging, this is of interest 

as it is suggested that the neurobiological basis for age-related slowing and associated higher-

order cognitive deficits, is the degeneration of neural pathways and synaptic connectivity with 

increasing age (e.g., Salthouse, 1992). An important question is how far such degeneration 

reflects healthy aging, and how much is pathological. 

There have been several studies investigating WMH and cognitive function, and a meta-

analysis of this work (Gunning-Dixon & Raz, 2000) suggests negative associations between 

WMH and processing speed, immediate and delayed recall, executive function, and global 

cognition. Additionally, a recent review (Christensen, Anstey, Leach, & Mackinnon, in press) 

did not identify strong associations between WMH and verbal and performance IQ. Although 

this body of work provides valuable insights into WMH-cognition relations, most studies that 

investigated information processing rate, examined mean differences in processing speed 

rather than measures of intraindividual differences in processing speed. 

To address this gap in the literature, we investigated WMH in relation to within-person 

variability and information processing speed in two psychomotor tasks, simple-RT and 

choice-RT. We also considered performance on several higher-order cognitive tasks tapping 

working and episodic memory, vocabulary, and global cognition. As it is important to 

establish if associations vary according to brain region, our analyses also take into account 

several major brain structures (frontal, temporal, parietal and occipital lobes). This is of 

particular interest as although processing speed is likely to be affected by white matter lesions 

throughout the brain, theoretical accounts of within-person variability propose that 

fluctuations in executive control (Bunce et al., 2004; West et al., 2002), or relatedly, 

attentional lapses (Bunce, Warr, & Cochrane, 1993), may underlie increasing variability in 

older persons. Although this latter position has been questioned (Salthouse, 1993), functional 

brain imaging work implicates the frontal cortex in executive control (see Cabezza & Nyberg, 
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2000), and the functional MRI work (Bellgrove et al., 2004) and neuropsychological work in 

traumatic brain injured patients (Stuss at al., 2003) cited earlier suggests an association 

between frontal structures and intraindividual variability. Together, this work leads to the 

expectation that WMH in frontal regions in particular will be associated with elevated within-

person variability.  

In this paper, we build upon earlier work in this population that identified associations 

between WMH and motor function (Sachdev, Wen, Christensen, & Jorm, 2005). We also 

consider the periventricular region (anterior and posterior horns, and periventricular body) as 

earlier work (Wen & Sachdev, 2004) indicates this area to be particularly prone to WMH. As 

the periventricular region is susceptible to ischemia due to reduced blood flow arising from 

cardiovascular diseases such as arteriosclerosis (Spangler, Challa, Moody, & Bell, 1994), 

valuable insights may result as to the mechanisms by which cardiovascular disease may affect 

cognitive function in the elderly. 

METHOD 

Participants 

Participants were sampled randomly from the electoral rolls for Canberra, ACT, and 

Queanbeyan, NSW, Australia, as part of the PATH Through Life Project which involves 

approximately 2500 persons in each of three age groups, 20-24, 40-44, and 60-64 years (for 

further details, see Anstey, Dear, Christensen, & Jorm, 2005). They were asked to complete a 

questionnaire under the supervision of a professional interviewer. In addition to the cognitive 

measures described below, data relating to mental health and lifestyle were also collected. 

Some basic physical tests were also carried out (e.g., blood pressure, grip strength, visual 

acuity) and the participants were asked to provide a cheek swab from which DNA could be 

extracted.  In the 60-64 years old age group, 622 participants were randomly selected and 

invited to undergo brain MRI scanning, with 478 agreeing to the MRI scan. For the present 

study, one participant was removed due to an MRI data logging problem, and a further eight 

persons eliminated following screening for mild cognitive impairment. The resulting sample 

of 469 individuals had a mean age of 62.61 years (SD = 1.41), was 48 percent female, and 

reported a mean of 14.15 years (SD = 2.54) of education.  
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Health and physical variables 

Self-reported health histories were recorded, and included details of heart and blood 

pressure problems, stroke, and diabetes (coded 1 = Yes, 2 = No).  Grip Strength was taken 

using the Smedley hand dynamometer (Model No PE7, Stoelting Co., Wood Dale, Illinois), 

which measures the force exerted in kilograms. The average of two trials from the dominant 

hand was the measure used here. Corrected Visual Acuity was measured using a 3 m Snellen 

Chart that contained seven lines that subtend 1 min of arc at distances of 60, 36, 24, 16, 9, 6 

and 5 m. A participant‟s score was the total number of letters readable, and scores ranged 

from 0 to 28.  Depressive symptoms in the past month were assessed by the Goldberg 

depression scale (Goldberg, Bridges, Duncan-Jones & Grayson, 1988), which give scores of 0 

to 9 for number of symptoms of depression.  

Psychomotor tasks  

RT Mean level: RT was tested using a small box held with both hands, with left and right 

buttons at the top to be depressed by the index fingers. The front of the box had three lights: 

two red stimulus lights under the left and right buttons respectively and a green get-ready 

light in the middle beneath these. There were four blocks of 20 trials measuring simple 

reaction time (SRT), followed by two blocks of 20 trials measuring choice reaction time 

(CRT). For SRT everyone used their right hand regardless of dominance. The interval 

between the 'get-ready' light and the first light of the trial was 2.3 secs for both SRT and CRT. 

Means were calculated after removing outliers. This was done by firstly eliminating any 

values over 6000 ms. Next, means and standard deviations were calculated for each individual 

for each block and values were eliminated which lay outside three standard deviations for 

each individual. A number of very slow individuals still retained RT scores greater than 1000 

ms. In a final step, these values were dropped before the final means per block were 

calculated for each participant. Here we present the grand mean across blocks for the 

respective tasks.  

Calculation of RT within-person variability: Following procedures reported elsewhere 

(Anstey et al., 2005; Christensen et al., 2005), mean absolute residuals (in ms) (MAR) were 

calculated for each individual by averaging the deviations from regression models of RT 

against trial number and block number in each of the simple and choice RT series (Blocks 1-4 

inclusive were simple RT and blocks 5-6 were choice RT blocks).  A quadratic function of 

trial number was used because the decline in RT with practice is not linear. Block number 
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was treated as categorical.  These models were designed to remove both intra-block practice 

effects and the effect of the short rest periods between blocks, leaving residuals that measure 

only random variation. In contrast, simply using each person‟s standard deviation of RT 

would inflate the apparent variability for participants who showed substantial improvement 

over the course of their trials. 

As expected, the between-subject variance of absolute residuals for the sample was found 

to increase as participants‟ mean reaction time increased, reflecting an association between 

within-person variability and reaction time.  Therefore, a measure of within-person variability 

that was independent of mean RT was computed. Graphical explorations revealed that the log 

of MAR decreases approximately linearly with the reciprocal of RT (i.e., with reaction 

speed). Therefore, the strength of the associations between the mean absolute residuals 

(MAR) and RT was estimated through a regression of log(MAR) against speed.  The linear 

slope of this function was calculated for simple (b = –0.55) and choice times (b = –0.35) using 

the 40 choice RTs and 80 simple RTs. The slopes b indicates the degree of association 

between log MAR and speed. To adjust for speed, deviations from the line of best fit were 

calculated using the formula log MIV = log MAR – b(1/mean RT), where MIV is the 

individual mean independent variability (i.e., the mean absolute residual adjusted for speed). 

Two scores of intra-individual variability adjusted for speed were computed for each 

individual. These were the individual mean-independent variation for simple reaction times 

(MIVS) and the mean-independent variation for choice reaction times (MIVC).  For example, 

for the simple reaction times the corrected variation was given by: 

}MeanRT/55.0MAR.exp{MIVS  

Here, „MeanRT‟ is an individual‟s mean reaction time in seconds, and the coefficient „0.55‟ is 

the regression slope described above (the regression intercept is ignored). The effect of this is 

that the variance is adjusted upwards more in participants with fast reaction times, to achieve 

a measure of variation independent of speed. Scatterplots of MIV against mean RT confirmed 

that these two measures are approximately uncorrelated, so that by using MIV the association 

of WMH with RT variability can be assessed independently of any association of WMH with 

mean RT. 

Other cognitive measures 

A brief battery of cognitive tests including RT was administered to participants within 6 

months of the MRI scan).  This included the Mini-Mental State Examination (Folstein, 
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Robins, & Helzer, 1983), the Symbol Digit Modalities Test (Smith, 1982), a test of immediate 

and delayed recall (the first trial of the California Verbal Learning Test and a Delayed Recall 

Trial: Delis, Kramer, Kaplan, & Ober, 1987), and a test of word knowledge (Spot-the-Word: 

Baddeley, Emslie, & Nimmo-Smith, 1992).  

MRI Procedure  

Imaging was conducted with a 1.5 Tesla Gyroscan (ACS-NT, Philips Medical Systems, 

Best, Netherlands) for T1-weighted 3D structural and T2-weighted FLAIR sequence MRI. A 

2D scout mid-sagittal cut for AC-PC plane alignment was first acquired. Then 3D structural 

MRI was acquired in coronal orientation using a T1-weighted FFE sequence (TR/TE/NEX = 

28.05/2.64/2; flip angle = 30 ; matrix size = 256 × 256; FOV = 260 × 260 mm; slice thickness 

= 2.0 mm, inter-slice distance = 1.0 mm), yielding over-contiguous coronal slices with an in-

plane spatial resolution of 1.016 × 1.016 mm/pixel. The FLAIR sequence was acquired in 

coronal orientation (TR/TE/TI/NEX = 11000/140/2600/2; matrix size = 256 × 256; FOV= 

230 × 230 mm; slice thickness = 4.0 mm with no gap between slices) with in-plane spatial 

resolution of 0.898 × 0.898 mm/pixel. The total time of each subject‟s scanning session was 

approximately 20 minutes. MRI scans were transferred to an independent Windows NT 

workstation and analyzed using the software packages ANALYZE (Mayo Foundation, 

Rochester MI, USA) and SPM99 (Cognitive Neurology Group, National Hospital for Nervous 

Diseases, London, UK).   

Quantification of White Matter Hyperintensities 

WMHs were identified on FLAIR sequences and co-registered with a T1 image of the 

same subject.  They were normalized spatially in Talairach space so that WMH could be 

identified and then localized. Falsely classified WMH were identified through visual 

inspection of WMH maps and removed.  Using a standard atlas (Duvernoy, 1999), we traced 

anatomical regions (deep white matter - frontal, parietal, temporal and occipital; 

periventricular white matter - anterior cap, posterior cap and periventricular body) on the 

standard single brain included in SPM99 software.  Using these brain region of interest 

masks, the WMH volumes, number, location and size were calculated automatically by 

implementing FSL (Image Analysis Group, FMRIB, Oxford University, UK: 

http://www.fmrib.ox.ac.uk/fsl/) in the script language PERL.  Since both linear and nonlinear 

transforms were applied onto each individual MRI, the WMH thus measured did not equate 

exactly to absolute volume. The relative value, or “density” (ratio of WMH against white 
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matter, expressed as a percentage), of the WMH of each individual was used.  Here, abnormal 

signal intensities greater than 6 SDs above the mean white matter intensity were classified as 

WMH. The details of the method, which has excellent reliability and good validity, are 

described elsewhere (Wen & Sachdev, 2004).  

Missing data 

For missing data on a minority of variables, values were imputed with the EM algorithm 

in SPSS using all of the variables in the present study (see Shafer & Graham, 2002).  Missing 

data frequencies before imputation were less than 2% for most variables, and less than 5% for 

all variables except for age (5.2%), years‟ education, and visual acuity (both 5.7%).  

RESULTS 

Descriptive data and bivariate correlations between WMH and the other major variables 

in this study, are presented in Table 1. The percentages in the extreme left column (beside the 

variable name) indicate the proportion of participants who exhibited WMH in that brain 

region, with ranges from approximately 50 percent of the sample for frontal and temporal 

lobes, to 100 percent for parietal and occipital lobes, and anterior horn. (For more detailed 

information of the distribution of WMH by brain region in this sample, see Wen and Sachdev, 

2004.) As immediate and delayed recall measures were highly intercorrelated (.82, P<.001), 

and findings did not vary for the two variables, in the interest of space, the mean of the two 

measures is reported in statistics below. 

Consideration of the bivariate correlations reveals several noteworthy associations 

between WMH and cognitive performance. First, no statistically reliable associations were 

found between WMH and the higher-order cognitive variables (recall, MMSE, digit 

backwards, and Spot the word), or the simple psychomotor task. Importantly though, both of 

the within-person variability measures for the choice-RT task (MARC, MIVC) correlated 

significantly with frontal WMH, but not with WMH in other brain regions. Also, posterior 

horn and periventricular body WMHs were significantly associated with slower mean 

responding in the choice-RT task. 

Tables 1 and 2 about here 

  

These associations were explored further in a series of hierarchical multiple regressions 

that examined linear and quadratic terms (the quadratic term estimates how far a curvilinear 



 White matter hyperintensities and variability 

 

 

11 

 

relationship exists between independent and dependent variables). In these analyses, we 

adjusted for several potential confounding variables. As gender and years‟ education were 

found to correlate significantly with several of the cognitive variables (female gender and 

more years‟ education were associated with higher performance), those variables were entered 

into each model. In addition, as an association between depression and WMH was found in an 

earlier study in this population (Jorm, Anstey, Christensen et al., 2005), depression was taken 

into account in the analyses. In order to minimize the possibility of Type I errors, alpha was 

set at .01 in these analyses. 

In the interest of space, only significant statistics from the regression analyses relating to 

WMH are presented in Table 2. After adjusting for gender, education, and depression, only 

frontal and posterior horn WMH selectively predicted cognitive performance. Consistent with 

bivariate analyses, WMH was not associated with performance on any of the higher-order 

cognitive tasks. However, it is important to note that of the four lobes (frontal, temporal, 

parietal, occipital), only frontal WMH was significantly associated with within-person 

variability on both measures, but not slowing in the choice RT task. Indeed, the significant 

quadratic term for MIVC (that term for MARC approached significance, p = .011) suggests 

that the greater the severity of frontal WMH, the greater the degree of within-person 

variability. This curvilinear trend is demonstrated in Figure 1. All other associations involving 

the four lobes were statistically unreliable. 

Figure 1 about here 

 

The other significant association evident in Table 2 is that between posterior horn WMH 

and mean choice responding; slower responding was associated with greater white matter 

lesioning. As this brain region is particularly prone to ischemia due to cardiovascular disease, 

we repeated the regressions adjusting for cardiovascular risk factors (hypertension, heart 

disease, stroke, diabetes). This made no difference to the original results.  

Finally, in order to eliminate the possibility that perceptual and motor processes were 

responsible for the findings relating to within-person variability in the choice RT task, we 

controlled for visual acuity to assess perceptual processes, and grip strength to control for 

motor functioning. Again, taking these variables into account made little difference to our 

initial findings. 
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DISCUSSION 

Although there have been numerous studies showing increased within-person variability 

in aging and clinical populations using behavioral measures, this is the first study to 

demonstrate an association between within-person variability in RT performance and WMH 

in a large community-based sample of older adults. A highly reliable automated procedure 

(Wen & Sachdev, 2004) was used to estimate lesioning in specific brain areas (frontal, 

temporal, parietal and occipital lobes, anterior and posterior horns, and periventricular body), 

thereby avoiding the need for the quantification of lesions through rating scales. The findings 

extend our earlier work demonstrating associations between WMH and motor functioning 

(Sachdev et al., 2005), and identify an important dissociation. Specifically, WMHs in the 

frontal cortex were significantly associated with greater variability, but not slowing of 

information processing or performance on several other higher-order cognitive tasks. 

Moreover, with one exception, WMH in other brain regions failed to predict either variability 

or performance on any of the other cognitive tasks. The exception was the association 

between posterior horn WMH and choice-RT suggesting greater lesioning in this brain region 

was associated with slower responding. These findings were evident after having adjusted for 

gender, years of education, depression, and perceptual and motor functions, and remained 

when cerebrovascular disease history had been taken into account. 

The results are important theoretically as they build upon functional MRI (Bellgrove et 

al., 2004) and neuropsychological work (Stuss et al., 2003), and clearly suggest that 

deterioration of neural pathways in the frontal cortex make a major contribution to the 

increased RT variability commonly observed in older adults as well as clinical groups. 

Moreover, the findings are consistent with the view that increased within-person variability 

reflects frontally moderated attentional lapses or relatedly, fluctuations in executive function 

(Bunce et al., 1993, 2004; West et al., 2002). This possibility is further supported by the 

absence of significant associations between WMH in other brain regions and within-person 

variability. 

We also found that WMHs in the periventricular body, and particularly the posterior 

horn, were strongly associated with slowing. As lesioning in this brain region is a likely 

consequence of restricted blood flow stemming from cerebrovascular disease (Spangler et al., 

1994), this finding suggests a possible mechanism by which cerebrovascular disease may 

influence speeded mental processing. Although this interpretation is plausible, contrary to 
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expectations, adjusting statistically for cerebrovascular disease history did not attenuate this 

association. Therefore, this finding should be treated with caution.  

 The results provide intriguing insights into the possible neurobiological mechanisms 

underlying within-person variability. Although there are other contributing factors, as WMH 

largely reflect lesioning to the myelinated axons that form connective pathways in the brain, 

the findings suggest that one of the major contributors to increased variability is damage to 

these pathways, particularly in the frontal cortex. This is consistent with the view that 

increased variability is one of the behavioral manifestations of neurobiological disturbance 

and central nervous system integrity (Hendrickson, 1982; Hultsch & MacDonald, 2004; Li & 

Lindenberger, 1999). However, it is unlikely that damage to white matter structures alone is 

the factor responsible for increased within-person variability. Indeed, neural network models 

(e.g., Li, Aggen, Nesselroade, & Baltes, 2001) implicate the neurotransmitter dopamine in 

variability of cognitive performance, and there is work suggesting the cholinergic 

neurotransmitter system is associated with the efficiency of inhibitory control (Edgington & 

Rusted, 2003). As increased variability and attentional lapses may be associated with 

impaired inhibitory control (Bunce et al., 1993), it is plausible that the cholinergic system also 

influences within-person variability. Together, it is likely that a combination of factors, 

including disruption to the dopaminergic and cholinergic neurotransmitter systems, and the 

presence of WMH, contribute to increased variability. The implications of the present 

research are twofold. First, the degree of white matter lesioning in the frontal cortex in 

particular is associated with within-person variability. Second, that neurobiological 

disturbance is characterized by more erratic responding that is captured by measures of 

within-person variability, but not mean RT. 

There are some limitations in the present research that we should acknowledge. First, the 

data were cross-sectional, and therefore we are unable to make inferences as to causality. 

Additionally, although all of the participants in this study were screened for dementia, and 

MCI cases removed, it is possible that those persons exhibiting increased variability and 

greater frontal WMH, were in the preclinical phase of an, as yet, undiagnosed neurological 

condition. Planned investigation of this population in the future will shed light on how far our 

findings were related to incipient neurological disorders. Third, although not a limitation, it is 

worth commenting on the possibility that the paucity of significant associations between 

WMH and cognitive variables generally, may have been related to the relatively young age of 

the present sample (60 to 64 years). It is possible that the degree of white matter lesioning in 
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this age group was not such that it impacted on cognitive function. Relatedly, our definition of 

WMH (>6 SDs above the mean white matter intensity) may only include more intense 

hyperintense signals. Mild changes in signal (seen as fuzziness) were excluded, as it is not 

customary to include this as WMH in visual inspection procedures. Therefore, the estimation 

of pathology was possibly conservative. This may also have contributed to the relatively small 

effect sizes. A final possibility is that the cognitive measures themselves were not sensitive to 

white matter lesioning at levels in the present study. Future investigation of this population 

will help provide insights into these issues. However, the present findings clearly suggest that 

measures of within-person variability relative to other cognitive measures may provide 

particularly useful measures for the early identification of neurobiological disturbance. It is 

important that further work replicates and confirms these findings. 

To conclude, this study suggests that damage to the neural pathways of the frontal cortex 

is strongly associated with increased within-person variability in adults aged 60 to 64 years. It 

is of note that associations between WMH and other cognitive variables were virtually absent. 

Although at present it is unclear as to whether persons with greater frontal WMH and 

intraindividual variability were in the preclinical phase of a neurological disorder, the findings 

suggest that measures of within-person variability may provide particularly sensitive 

diagnostic tools in clinical contexts for the identification of individuals suffering 

neurobiological disturbance and decline. This possibility is particularly exciting given the 

relatively young age of our sample, as it highlights the potential of these measures for early 

identification of persons requiring clinical intervention. It is our intention to explore this 

potential in future assessments of this community-based sample. 
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Table 1.  Means, standard deviations, and bivariate correlations between WMH and other study variables 

 
Notes 
* p<.01; ** p<.001 
 
Percentages adjacent to WMH variables represent percentage of sample that exhibited WMH in this brain region. All correlations computed on N = 469.  
Gender: 1 = male, 2 = female 
Gend = Gender; Educ = Years’ education; MMSE = Mini Mental State Examination; MARS = Mean absolute residuals of the Simple-RT task; MARC = Mean 
absolute residuals of the Choice-RT task; SRT = Simple RT; CRT = Choice RT; MIVS = Mean independent variability of Simple-RT task; MIVC = Mean 
independent variability of Choice-RT task; Ant Horn = Anterior horn; Post Horn = Posterior horn; Peri Body = Periventricular body 
 

 

 M SD Age 
(yrs) 

Gend Educ 
(yrs) 

Recall MMSE Digit 
back 

Spot 
word 

MAR
S 

MAR
C 

SRT 
(s) 

CRT 
(s) 

MIVS MIVC 

M      -      - 62.61      - 14.15 7.04 29.37 5.02 52.37 .038 .050 .249 .317 .258 .154 

SD      -      - 1.42      - 2.54 2.06 1.00 2.13 5.78 .019 .014 .046 .040 .077 .039 

                

Frontal (54.8%) .107 .414 -.02 .07 -.05 -.01 .03 .01 -.02 .03 .16** -.01 .08 .05 .14* 

Temporal (48.8%) .022 .056 -.08 -.08 -.04 .06 .08 .01 -.06 .06 .02 .00 .03 .08 .00 

Parietal (100.0%) .072 .223 -.03 -.03 -.05 -.03 -.02 -.03 -.02 .06 .07 .02 .07 .06 .05 

Occipital (100.0%) .115 .204 .12* .03 .03 .01 -.03 .01 -.02 .09 .06 .04 .04 .08 .04 

Ant horn (100.0%) 2.063 2.515 -.05 .11 -.09 .01 .07 -.03 -.04 -.01 .01 .02 .08 -.05 -.02 

Post horn (78.5%) .346 .745 -.06 .11 -.05 -.01 -.02 .04 -.05 .07 .05 .01 .16** .06 -.01 

Peri body (98.1%) 1.590 1.658 -.02 .14* -.12* -.01 .04 -.06 -.06 .03 -.01 .06 .12* -.04 -.06 
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Table 2. Polynomial regression analyses: Cognitive variable regressed on white matter hyperintensities 

 

 
Predictor Recall MMSE Backward 

Digit Span 
Spot the 
Word 

MARS MARC SRT CRT  MIVS MIVC 

 B Beta B Beta B Beta B Beta B Beta B Beta B Beta B Beta B Beta B Beta 

                     

Frontal   
 
Lin

1
 -.01 .00 .10 .04 .19 .04 -.04 .00 .00 .02 .01 .15* .00 -.02 .01 .08 .01 .04 .01 .13* 

            Quad
2
 .07 .07 -.06 -.12 .05 .05 -.50 -.16 .00 .02 .00 .26 .00 .02 .00 .00 .00 .06 .01 .29* 

                     

Post horn Lin
1                                           

 
          

 -.07 -.03 -.02 -.02 .18 .06 -.25 -.03 .00 .06 .00 .05 .00 -.01 .01 .15* .01 .07 .00 -.01 

            Quad
2
 .06 .08 .02 .06 .00 .01 .35 .18 .00 .04 .00 .20 .00 .10 .00 .28 .00 .02 .00 .17 

                     

 
 
Notes 
 
*p<.01 
1. df = 1, 464; 2. df = 1, 463; Adjusted for depression, gender, and years’ education 
Post horn = Posterior horn 
MMSE = Mini Mental State Examination; MARS = Mean absolute residuals of the Simple-RT task; MARC = Mean absolute residuals of the Choice-RT task; 
SRT = Simple RT; CRT = Choice RT; MIVS = Mean independent variability of Simple-RT task; MIVC = Mean independent variability of Choice-RT task 
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Figure caption 

Figure 1. Choice RT variability (MIVC) as a function of white matter hyperintensity 

(WMH) 
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