828 research outputs found
Dynamics of locally coupled agents with next nearest neighbor interaction
We consider large but finite systems of identical agents on the line with up
to next nearest neighbor asymmetric coupling. Each agent is modelled by a
linear second order differential equation, linearly coupled to up to four of
its neighbors. The only restriction we impose is that the equations are
decentralized. In this generality we give the conditions for stability of these
systems. For stable systems, we find the response to a change of course by the
leader. This response is at least linear in the size of the flock. Depending on
the system parameters, two types of solutions have been found: damped
oscillations and reflectionless waves. The latter is a novel result and a
feature of systems with at least next nearest neighbor interactions. Analytical
predictions are tested in numerical simulations
Static Trace-Based Deadlock Analysis for Synchronous Mini-Go
We consider the problem of static deadlock detection for programs in the Go
programming language which make use of synchronous channel communications. In
our analysis, regular expressions extended with a fork operator capture the
communication behavior of a program. Starting from a simple criterion that
characterizes traces of deadlock-free programs, we develop automata-based
methods to check for deadlock-freedom. The approach is implemented and
evaluated with a series of examples
From Social Data Mining to Forecasting Socio-Economic Crisis
Socio-economic data mining has a great potential in terms of gaining a better
understanding of problems that our economy and society are facing, such as
financial instability, shortages of resources, or conflicts. Without
large-scale data mining, progress in these areas seems hard or impossible.
Therefore, a suitable, distributed data mining infrastructure and research
centers should be built in Europe. It also appears appropriate to build a
network of Crisis Observatories. They can be imagined as laboratories devoted
to the gathering and processing of enormous volumes of data on both natural
systems such as the Earth and its ecosystem, as well as on human
techno-socio-economic systems, so as to gain early warnings of impending
events. Reality mining provides the chance to adapt more quickly and more
accurately to changing situations. Further opportunities arise by individually
customized services, which however should be provided in a privacy-respecting
way. This requires the development of novel ICT (such as a self- organizing
Web), but most likely new legal regulations and suitable institutions as well.
As long as such regulations are lacking on a world-wide scale, it is in the
public interest that scientists explore what can be done with the huge data
available. Big data do have the potential to change or even threaten democratic
societies. The same applies to sudden and large-scale failures of ICT systems.
Therefore, dealing with data must be done with a large degree of responsibility
and care. Self-interests of individuals, companies or institutions have limits,
where the public interest is affected, and public interest is not a sufficient
justification to violate human rights of individuals. Privacy is a high good,
as confidentiality is, and damaging it would have serious side effects for
society.Comment: 65 pages, 1 figure, Visioneer White Paper, see
http://www.visioneer.ethz.c
Eigenvector localization as a tool to study small communities in online social networks
We present and discuss a mathematical procedure for identification of small
"communities" or segments within large bipartite networks. The procedure is
based on spectral analysis of the matrix encoding network structure. The
principal tool here is localization of eigenvectors of the matrix, by means of
which the relevant network segments become visible. We exemplified our approach
by analyzing the data related to product reviewing on Amazon.com. We found
several segments, a kind of hybrid communities of densely interlinked reviewers
and products, which we were able to meaningfully interpret in terms of the type
and thematic categorization of reviewed items. The method provides a
complementary approach to other ways of community detection, typically aiming
at identification of large network modules
A dynamic network approach for the study of human phenotypes
The use of networks to integrate different genetic, proteomic, and metabolic
datasets has been proposed as a viable path toward elucidating the origins of
specific diseases. Here we introduce a new phenotypic database summarizing
correlations obtained from the disease history of more than 30 million patients
in a Phenotypic Disease Network (PDN). We present evidence that the structure
of the PDN is relevant to the understanding of illness progression by showing
that (1) patients develop diseases close in the network to those they already
have; (2) the progression of disease along the links of the network is
different for patients of different genders and ethnicities; (3) patients
diagnosed with diseases which are more highly connected in the PDN tend to die
sooner than those affected by less connected diseases; and (4) diseases that
tend to be preceded by others in the PDN tend to be more connected than
diseases that precede other illnesses, and are associated with higher degrees
of mortality. Our findings show that disease progression can be represented and
studied using network methods, offering the potential to enhance our
understanding of the origin and evolution of human diseases. The dataset
introduced here, released concurrently with this publication, represents the
largest relational phenotypic resource publicly available to the research
community.Comment: 28 pages (double space), 6 figure
Self-organization towards optimally interdependent networks by means of coevolution
Coevolution between strategy and network structure is established as a means to arrive at the optimal conditions needed to resolve social dilemmas. Yet recent research has highlighted that the interdependence between networks may be just as important as the structure of an individual network. We therefore introduce the coevolution of strategy and network interdependence to see whether this can give rise to elevated levels of cooperation in the prisonerʼs dilemma game. We show that the interdependence between networks self-organizes so as to yield optimal conditions for the evolution of cooperation. Even under extremely adverse conditions, cooperators can prevail where on isolated networks they would perish. This is due to the spontaneous emergence of a two-class society, with only the upper class being allowed to control and take advantage of the interdependence. Spatial patterns reveal that cooperators, once arriving at the upper class, are much more competent than defectors in sustaining compact clusters of followers. Indeed, the asymmetric exploitation of interdependence confers to them a strong evolutionary advantage that may resolve even the toughest of social dilemmas
Social marketing and healthy eating : Findings from young people in Greece
This document is the Accepted Manuscript version. The final publication is available at Springer via http://dx.doi.org/10.1007/s12208-013-0112-xGreece has high rates of obesity and non-communicable diseases owing to poor dietary choices. This research provides lessons for social marketing to tackle the severe nutrition-related problems in this country by obtaining insight into the eating behaviour of young adults aged 18–23. Also, the main behavioural theories used to inform the research are critically discussed. The research was conducted in Athens. Nine focus groups with young adults from eight educational institutions were conducted and fifty-nine participants’ views towards eating habits, healthy eating and the factors that affect their food choices were explored. The study found that the participants adopted unhealthier nutritional habits after enrolment. Motivations for healthy eating were good health, appearance and psychological consequences, while barriers included lack of time, fast-food availability and taste, peer pressure, lack of knowledge and lack of family support. Participants reported lack of supportive environments when deciding on food choices. Based on the findings, recommendations about the development of the basic 4Ps of the marketing mix, as well as of a fifth P, for Policy are proposedPeer reviewe
Inheritance patterns in citation networks reveal scientific memes
Memes are the cultural equivalent of genes that spread across human culture
by means of imitation. What makes a meme and what distinguishes it from other
forms of information, however, is still poorly understood. Our analysis of
memes in the scientific literature reveals that they are governed by a
surprisingly simple relationship between frequency of occurrence and the degree
to which they propagate along the citation graph. We propose a simple
formalization of this pattern and we validate it with data from close to 50
million publication records from the Web of Science, PubMed Central, and the
American Physical Society. Evaluations relying on human annotators, citation
network randomizations, and comparisons with several alternative approaches
confirm that our formula is accurate and effective, without a dependence on
linguistic or ontological knowledge and without the application of arbitrary
thresholds or filters.Comment: 8 two-column pages, 5 figures; accepted for publication in Physical
Review
A measure of individual role in collective dynamics
Identifying key players in collective dynamics remains a challenge in several
research fields, from the efficient dissemination of ideas to drug target
discovery in biomedical problems. The difficulty lies at several levels: how to
single out the role of individual elements in such intermingled systems, or
which is the best way to quantify their importance. Centrality measures
describe a node's importance by its position in a network. The key issue
obviated is that the contribution of a node to the collective behavior is not
uniquely determined by the structure of the system but it is a result of the
interplay between dynamics and network structure. We show that dynamical
influence measures explicitly how strongly a node's dynamical state affects
collective behavior. For critical spreading, dynamical influence targets nodes
according to their spreading capabilities. For diffusive processes it
quantifies how efficiently real systems may be controlled by manipulating a
single node.Comment: accepted for publication in Scientific Report
- …
