472 research outputs found
Recent development and perspectives of machines for lattice QCD
I highlight recent progress in cluster computer technology and assess status
and prospects of cluster computers for lattice QCD with respect to the
development of QCDOC and apeNEXT. Taking the LatFor test case, I specify a
512-processor QCD-cluster better than 1$/Mflops.Comment: 14 pages, 17 figures, Lattice2003(plenary
First Nonperturbative Test of a Relativistic Heavy Quark Action in Quenched Lattice QCD
We perform a numerical test of a relativistic heavy quark(RHQ) action,
recently proposed by Tsukuba group, in quenched lattice QCD at
fm. With the use of the improvement parameters previously determined at
one-loop level for the RHQ action, we investigate a restoration of rotational
symmetry for heavy-heavy and heavy-light meson systems around the charm quark
mass. We focused on two quantities, the meson dispersion relation and the
pseudo-scalar meson decay constants. It is shown that the RHQ action
significantly reduces the discretization errors due to the charm quark mass. We
also calculate the S-state hyperfine splittings for the charmonium and
charmed-strange mesons and the meson decay constant. The remaining
discretization errors in the physical quantities are discussed.Comment: 21 pages, 16 figures. A reference and a comment added, a major
modification in appendix, several minor changes in the abstract and the main
text. Errors in affiliation are corrected. Version appeared in JHE
Enhancement of CURB65 score with proadrenomedullin (CURB65-A) for outcome prediction in lower respiratory tract infections: Derivation of a clinical algorithm
Proadrenomedullin (ProADM) confers additional prognostic information to established clinical risk scores in lower respiratory tract infections (LRTI). We aimed to derive a practical algorithm combining the CURB65 score with ProADM-levels in patients with community-acquired pneumonia (CAP) and non-CAP-LRTI
Measurement of the branching fraction and CP content for the decay B(0) -> D(*+)D(*-)
This is the pre-print version of the Article. The official published version can be accessed from the links below. Copyright @ 2002 APS.We report a measurement of the branching fraction of the decay B0βD*+D*- and of the CP-odd component of its final state using the BABAR detector. With data corresponding to an integrated luminosity of 20.4ββfb-1 collected at the Ξ₯(4S) resonance during 1999β2000, we have reconstructed 38 candidate signal events in the mode B0βD*+D*- with an estimated background of 6.2Β±0.5 events. From these events, we determine the branching fraction to be B(B0βD*+D*-)=[8.3Β±1.6(stat)Β±1.2(syst)]Γ10-4. The measured CP-odd fraction of the final state is 0.22Β±0.18(stat)Β±0.03(syst).This work is supported by DOE and NSF (USA), NSERC (Canada), IHEP (China), CEA and CNRS-IN2P3 (France), BMBF (Germany), INFN (Italy), NFR (Norway), MIST (Russia), and PPARC (United Kingdom). Individuals have received support from the A.P. Sloan Foundation, Research Corporation, and Alexander von Humboldt Foundation
Measurement of D-s(+) and D-s(*+) production in B meson decays and from continuum e(+)e(-) annihilation at βs=10.6 GeV
This is the pre-print version of the Article. The official published version can be accessed from the links below. Copyright @ 2002 APSNew measurements of Ds+ and Ds*+ meson production rates from B decays and from qqΜ
continuum events near the Ξ₯(4S) resonance are presented. Using 20.8 fb-1 of data on the Ξ₯(4S) resonance and 2.6 fb-1 off-resonance, we find the inclusive branching fractions B(BβDs+X)=(10.93Β±0.19Β±0.58Β±2.73)% and B(BβDs*+X)=(7.9Β±0.8Β±0.7Β±2.0)%, where the first error is statistical, the second is systematic, and the third is due to the Ds+βΟΟ+ branching fraction uncertainty. The production cross sections Ο(e+e-βDs+X)ΓB(Ds+βΟΟ+)=7.55Β±0.20Β±0.34pb and Ο(e+e-βDs*Β±X)ΓB(Ds+βΟΟ+)=5.8Β±0.7Β±0.5pb are measured at center-of-mass energies about 40 MeV below the Ξ₯(4S) mass. The branching fractions Ξ£B(BβDs(*)+D(*))=(5.07Β±0.14Β±0.30Β±1.27)% and Ξ£B(BβDs*+D(*))=(4.1Β±0.2Β±0.4Β±1.0)% are determined from the Ds(*)+ momentum spectra. The mass difference m(Ds+)-m(D+)=98.4Β±0.1Β±0.3MeV/c2 is also measured.This work was supported by DOE and NSF (USA), NSERC (Canada), IHEP (China), CEA and CNRS-IN2P3 (France), BMBF (Germany), INFN (Italy), NFR (Norway), MIST (Russia), and PPARC (United Kingdom). Individuals have received support from the Swiss NSF, A. P. Sloan Foundation, Research Corporation, and Alexander von Humboldt Foundation
In Situ Spatiotemporal Mapping of Flow Fields around Seeded Stem Cells at the Subcellular Length Scale
A major hurdle to understanding and exploiting interactions between the stem cell and its environment is the lack of a tool for precise delivery of mechanical cues concomitant to observing sub-cellular adaptation of structure. These studies demonstrate the use of microscale particle image velocimetry (ΞΌ-PIV) for in situ spatiotemporal mapping of flow fields around mesenchymal stem cells, i.e. murine embryonic multipotent cell line C3H10T1/2, at the subcellular length scale, providing a tool for real time observation and analysis of stem cell adaptation to the prevailing mechanical milieu. In the absence of cells, computational fluid dynamics (CFD) predicts flow regimes within 12% of ΞΌ-PIV measures, achieving the technical specifications of the chamber and the flow rates necessary to deliver target shear stresses at a particular height from the base of the flow chamber. However, our ΞΌ-PIV studies show that the presence of cells per se as well as the density at which cells are seeded significantly influences local flow fields. Furthermore, for any given cell or cell seeding density, flow regimes vary significantly along the vertical profile of the cell. Hence, the mechanical milieu of the stem cell exposed to shape changing shear stresses, induced by fluid drag, varies with respect to proximity of surrounding cells as well as with respect to apical height. The current study addresses a previously unmet need to predict and observe both flow regimes as well as mechanoadaptation of cells in flow chambers designed to deliver precisely controlled mechanical signals to live cells. An understanding of interactions and adaptation in response to forces at the interface between the surface of the cell and its immediate local environment may be key for de novo engineering of functional tissues from stem cell templates as well as for unraveling the mechanisms underlying multiscale development, growth and adaptation of organisms
Global gene expression analysis of canine osteosarcoma stem cells reveals a novel role for COX-2 in tumour initiation
Osteosarcoma is the most common primary bone tumour of both children and dogs. It is an aggressive tumour in both species with a rapid clinical course leading ultimately to metastasis. In dogs and children distant metastasis occurs in >80% of individuals treated by surgery alone. Both canine and human osteosarcoma has been shown to contain a sub-population of cancer stem cells (CSCs), which may drive tumour growth, recurrence and metastasis, suggesting that naturally occurring canine osteosarcoma could act as a preclinical model for the human disease. Here we report the successful isolation of CSCs from primary canine osteosarcoma, as well as established cell lines. We show that these cells can form tumourspheres, and demonstrate relative resistance to chemotherapy. We demonstrate similar results for the human osteosarcma cell lines, U2OS and SAOS2. Utilizing the Affymetrix canine microarray, we are able to definitively show that there are significant differences in global gene expression profiles of isolated osteosarcoma stem cells and the daughter adherent cells. We identified 13,221 significant differences (pβ=β0.05), and significantly, COX-2 was expressed 141-fold more in CSC spheres than daughter adherent cells. To study the role of COX-2 expression in CSCs we utilized the COX-2 inhibitors meloxicam and mavacoxib. We found that COX-2 inhibition had no effect on CSC growth, or resistance to chemotherapy. However inhibition of COX-2 in daughter cells prevented sphere formation, indicating a potential significant role for COX-2 in tumour initiation
Identification of miRs-143 and -145 that Is Associated with Bone Metastasis of Prostate Cancer and Involved in the Regulation of EMT
The principal problem arising from prostate cancer (PCa) is its propensity to metastasize to bone. MicroRNAs (miRNAs) play a crucial role in many tumor metastases. The importance of miRNAs in bone metastasis of PCa has not been elucidated to date. We investigated whether the expression of certain miRNAs was associated with bone metastasis of PCa. We examined the miRNA expression profiles of 6 primary and 7 bone metastatic PCa samples by miRNA microarray analysis. The expression of 5 miRNAs significantly decreased in bone metastasis compared with primary PCa, including miRs-508-5p, -145, -143, -33a and -100. We further examined other samples of 16 primary PCa and 13 bone metastases using real-time PCR analysis. The expressions of miRs-143 and -145 were verified to down-regulate significantly in metastasis samples. By investigating relationship of the levels of miRs-143 and -145 with clinicopathological features of PCa patients, we found down-regulations of miRs-143 and -145 were negatively correlated to bone metastasis, the Gleason score and level of free PSA in primary PCa. Over-expression miR-143 and -145 by retrovirus transfection reduced the ability of migration and invasion in vitro, and tumor development and bone invasion in vivo of PC-3 cells, a human PCa cell line originated from a bone metastatic PCa specimen. Their upregulation also increased E-cadherin expression and reduced fibronectin expression of PC-3 cells which revealed a less invasive morphologic phenotype. These findings indicate that miRs-143 and -145 are associated with bone metastasis of PCa and suggest that they may play important roles in the bone metastasis and be involved in the regulation of EMT Both of them may also be clinically used as novel biomarkers in discriminating different stages of human PCa and predicting bone metastasis
Biology of urothelial tumorigenesis: insights from genetically engineered mice
Urothelium, one of the slowest cycling epithelia in the body, embodies a unique biological context for cellular transformation. Introduction of oncogenes into or removing tumor suppressor genes from the urothelial cells or a combination of both using the transgenic and/or knockout mouse approaches has provided useful insights into the molecular mechanisms of urothelial transformation and tumorigenesis. It is becoming increasingly clear that over-activation of the receptor tyrosine kinase (RTK) pathway, as exemplified by the constitutively activated Ha-ras oncogene, is both necessary and sufficient to initiate the low-grade, non-invasive urothelial carcinomas. Dosage of the mutated Ha-ras, but not concurrent inactivation of pro-senescence molecules p16Ink4a and p19Arf, dictates whether and when the low-grade urothelial carcinomas arise. Inactivation of both p53 and pRb, a prevailing paradigm previously proposed for muscle-invasive urothelial tumorigenesis, is found to be necessary but insufficient to initiate this urothelial carcinoma variant. Instead, downregulation in p53/pRb co-deficient urothelial cells of p107, a pRb family member, is associated with the genesis of the muscle-invasive bladder cancers. p53 deficiency also seems to be capable of cooperating with that of PTEN in eliciting invasive urothelial carcinomas. The genetically engineered mice have improved the molecular definition of the divergent pathways of urothelial tumorigenesis and progression, helped delineate the intricate crosstalk among different genetic alterations within a urothelium-specific context, identified new prognostic markers and novel therapeutic targets potentially applicable for clinical intervention, and provided in vivo platforms for testing preventive strategies of bladder cancer
- β¦