10 research outputs found

    A structurally and functionally biomimetic biphasic scaffold for intervertebral disc tissue engineering.

    Get PDF
    Tissue engineering offers high hopes for the treatment of intervertebral disc (IVD) degeneration. Whereas scaffolds of the disc nucleus and annulus have been extensively studied, a truly biomimetic and mechanically functional biphasic scaffold using naturally occurring extracellular matrix is yet to be developed. Here, a biphasic scaffold was fabricated with collagen and glycosaminoglycans (GAGs), two of the most abundant extracellular matrix components in the IVD. Following fabrication, the scaffold was characterized and benchmarked against native disc. The biphasic scaffold was composed of a collagen-GAG co-precipitate making up the nucleus pulposus-like core, and this was encapsulated in multiple lamellae of photochemically crosslinked collagen membranes comprising the annulus fibrosus-like lamellae. On mechanical testing, the height of our engineered disc recovered by similar to 82-89% in an annulus-independent manner, when compared with the 99% recovery exhibited by native disc. The annulus-independent nature of disc height recovery suggests that the fluid replacement function of the engineered nucleus pulposus core might mimic this hitherto unique feature of native disc. Biphasic scaffolds comprised of 10 annulus fibrosus-like lamellae had the best overall mechanical performance among the various designs owing to their similarity to native disc in most aspects, including elastic compliance during creep and recovery, and viscous compliance during recovery. However, the dynamic mechanical performance (including dynamic stiffness and damping factor) of all the biphasic scaffolds was similar to that of the native discs. This study contributes to the rationalized design and development of a biomimetic and mechanically viable biphasic scaffold for IVD tissue engineering.published_or_final_versio

    Fabrication of multi-component spinal motion segment-like construct using mesenchymal stem cells and collagen

    No full text
    Concurrent Session 3Oral Presentatio

    Engineering a Multicomponent Spinal Motion Segment-Like Construct from Mesenchymal Stem Cells

    No full text
    Conference theme: The Intervertebral Disc - from Degeneration to Therapeutic Motion PreservationThe abstract can be viewed at http://www.spineresearchforum.org/WFSR_2014_Thieme_AbstractBook_with_Cover.pdfOral PresentationIntroduction The task of engineering the intervertebral disc is challenging as the complex tissue needs to integrate with the host tissue and performits function after the implantation. The vertebrae connected to the endplates are essential to integrate with the host vertebrae tissue which had been shown by Luk et al in whole disc transplantation.1 Hence, engineering the complex tissue needs to integrate the different components of the vertebrae (VB), cartilaginous endplate (CEP), nucleus pulposus (NP), and annulus fibrosus (AF); both biologically and mechanically. In this study, the multiple component spinal motion segments were fabricated by integrating these components. The construct was then loaded in a bioreactor and supplied with mechanical and biological stimulation. The functional aspect of the fabricated endplate-like construct was evaluated by a permeability test. Materials and Methods Rabbit mesenchymal stem cells (rMSCs) were encapsulated in collagen and induced to differentiate toward osteogenic and chondrogenic lineages before fabricating trilayered osteochondral (OC) constructs as previously mentioned. To test the nutritional function of the OC construct which acts as the endplate, rabbit nucleus pulposus cells (rNPCs)-encapsulated collagen microspheres were trapped in a sealed chamber formed with the OC construct such that the nutrients have to diffuse through the OC construct to reach the inside of the chamber. Cell viability of the rNPCs was then evaluated. To fabricate the multiple component construct, a rMSCs encapsulated collagen-GAG precipitate was added in between two OC construct and placed in between the shaft of the bioreactor. Then a layer of rMSC encapsulated collagen was formed around the construct to form the AF-like lamella. Torsional loading was applied onto the construct to study its effect on cell alignment in the AF-like lamella. Finally, one to three layers of AF-like lamellae were added to the spinal motion segment construct and cultured in the bioreactor with complex loading for 14 days. Histological, ultrastructural, and mechanical evaluation was done on the construct. Results In the custom developed functionality test for nutrient transport, the rNPCs in the chamber were viable at the end of the culture showed that nutrientswere able to diffuse through the OC construct. For the effect of torsional loading on cell alignment in the AF-like lamella, alignment analysis showed that the cells were aligned along a preferred axis under torsional loading compared with control group without loading. However, no collagen fibers alignment was found in this study. The multiple component construct was fabricated with each component similar to the spinal motion segment. The different components of the construct were well integrated throughout the culture and were shown by histology. Mean torsional stiffness of the constructs significantly increased as the number of rMSC encapsulated AF-like layer increased. Conclusion This study demonstrated the feasibility to engineer a spinal motion segment-like tissue with collagen and MSC. The OC constructs demonstrated its nutritional function and can be used as a vertebra-endplate construct in this model. rMSC encapsulated in collagen gel can be induced to re-orientate and align in a certain direction by applying cyclic torsional force on the tubular structure. This can be a tissue engineered model to study the effects of various strategies in functional remodeling and maturation of the intervertebral disc. Disclosure of Interest None declared Reference 1. Luk KD, Ruan DK. Intervertebral disc transplantation: a biological approach to motion preservation. Eur Spine J 2008;17(Suppl 4):504–51
    corecore