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Abstract
Tissue engineering offers high hopes for the treatment of intervertebral disc (IVD) degen-

eration. Whereas scaffolds of the disc nucleus and annulus have been extensively stud-

ied, a truly biomimetic and mechanically functional biphasic scaffold using naturally

occurring extracellular matrix is yet to be developed. Here, a biphasic scaffold was fabri-

cated with collagen and glycosaminoglycans (GAGs), two of the most abundant extracel-

lular matrix components in the IVD. Following fabrication, the scaffold was characterized

and benchmarked against native disc. The biphasic scaffold was composed of a colla-

gen-GAG co-precipitate making up the nucleus pulposus-like core, and this was encap-

sulated in multiple lamellae of photochemically crosslinked collagen membranes

comprising the annulus fibrosus-like lamellae. On mechanical testing, the height of our

engineered disc recovered by ~82-89% in an annulus-independent manner, when com-

pared with the 99% recovery exhibited by native disc. The annulus-independent nature of

disc height recovery suggests that the fluid replacement function of the engineered

nucleus pulposus core might mimic this hitherto unique feature of native disc. Biphasic

scaffolds comprised of 10 annulus fibrosus-like lamellae had the best overall mechanical

performance among the various designs owing to their similarity to native disc in most

aspects, including elastic compliance during creep and recovery, and viscous compli-

ance during recovery. However, the dynamic mechanical performance (including

dynamic stiffness and damping factor) of all the biphasic scaffolds was similar to that of

the native discs. This study contributes to the rationalized design and development of a

biomimetic and mechanically viable biphasic scaffold for IVD tissue engineering.

Introduction
In developed countries, lower back pain occurs in more than 70% of people, affecting their
quality of live [1]. Although the patho-etiology of degenerative disc disease is still unknown
[2], the physiological changes that take place at the cellular level as an intervertebral disc (IVD)
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degenerates are well documented. Young and healthy IVD are biphasic in structure. They are
comprised of an inner core, or nucleus pulposus (NP), which is rich in glycosaminoglycans
(GAGs) that attract water, and in this way, resist deformation against compressive loads and
recover lost disc height upon load reduction through swelling [2–4]. The NP core is sur-
rounded by the annulus fibrosus (AF), which is comprised of 15–40 lamellae, which are con-
centric, interwoven layers composed primarily of collagen. The outer AF has distinctive layer
structure while the inner AF has higher GAG content transiting to NP. The lamellae confine
the NP and thus prevent any lateral deformation due to compressive loads [2]. The biphasic
structure of the disc works to maintain the disc height during variations in diurnal loading [2,
5]. The cells are round and chondrocyte-like in the NP and elongated and fibroblast-like in the
AF [2]. Disc degeneration is characterized by a reduced GAG content and herniation of the NP
due to a weakened AF, and these together gradually result in a reduced disc height [2].

Even when the cause of lower back pain cannot be confirmed, treatment of the disc degener-
ation may be important for resolving the pain [2, 6]. Currently, the only intervention for a
degenerated disc, especially a severely damaged one, is surgery [6]. However, surgical proce-
dures can also be problematic; for example, removal of a degenerated disc by discectomy ren-
ders the joint unstable [6]. Spinal fusion involves fusing adjacent vertebral bones by insertion
of an interbody cage and is considered to be the clinical gold standard for treating degenerative
disc disease. However, while this procedure stabilizes the joint, it compromises movement,
alters the biomechanics of the vertebral column and risks the propagation of disc degeneration
to other discs [6]. Prosthetic disc replacement offers to preserve the joint with adequate
mechanical strength and hence movement, but there are also limitations with this procedure,
such as subsidence and implant aging, which might require additional surgery [6].

Tissue engineering presents a potential biological solution for replacing the structure and
function of a degenerative disc. This is particularly relevant at late stages of degeneration
when a biocompatible scaffold is produced to provide temporary mechanical support as well
as the structural features required for remodeling and maintenance of the engineered tissue
by viable cells. Investigations into the use of biomaterials such as alginate, collagen, hyaluro-
nan and collagen/GAG as a possible NP replacements, and polyglycolic acid/polylactic acid,
silk and alginate/chitosan fibers as possible AF replacements have shown promising results
[7, 8]. Recent research has focused on mimicking the biphasic structure of the native AF and
NP [9–14]. Most of these studies demonstrated that whereas the cells cultured in biphasic
scaffolds maintained a phenotype similar to their native counterparts, the corresponding
matrix (such as GAG and type II collagen in the NP), accumulated but was inadequate. In
one study by Bowles et al., engineered biphasic discs created from collagen (AF) / alginate
(NP) were implanted to rat tails and showed similar GAG and hydroxyproline content to
the native disc over six months. Their biphasic disc also demonstrated similar mechanical
properties, such as equilibrium modulus, hydraulic permeability, and percent hysteresis
comparable to the rat caudal disc [9], demonstrating the possibility to bioengineer disc
replacements with mechanical viability.

To mimic the structure and function of native disc, an ideal biphasic scaffold should be
made from biomaterials with excellent biocompatibility and with comparable mechanical
properties of the native discs. Specifically, the structure should be composed of lamellae struc-
tures with comparable strength to the AF, and which encapsulate a nucleus that closely approx-
imates the native NP. Collagen is a natural protein that exists in abundance in mammals, and
which has low antigenicity and is thus a common biomaterial for scaffolds. To make the colla-
gen stronger for the AF scaffold and more GAG-rich for the NP core, photochemically-cross-
linked collagen membrane (PCM) [15] and collagen-GAG (CG) modifications [16] were
developed by our group, respectively. The PCM was shown to have a tangential modulus of 20
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MPa at 90% rupture strain, which is considerably stronger than that of non-crosslinked colla-
gen membrane (3 MPa), and is comparable to the tensile modulus of an AF lamella in the cir-
cumferential direction, which is also 20 MPa [15]. Photochemical crosslinking involves
exciting rose Bengal, a non-toxic photosensitizer with an argon laser at 514 nm. The crosslink-
ing process is non-thermal and simple to control, and it may be integrated with the lamination
process during construction of the biphasic scaffold. Furthermore, the GAG content was nor-
malized against the level of hydroxyproline (HYP), which represents collagen, and the ratio
used indicates the relative abundance of GAGs in GAG-rich tissues. Early reports suggested
that, with the crosslinking methods available at the time, the GAG:HYP ratio could not exceed
2.5 [17], which is similar to that demonstrated in articular cartilage [3]. On the other hand, the
chemically modified CG co-precipitation we developed [16] has improved the GAG:HYP ratio
to>4.5, which is comparable to that in aged NP [3], although it is still much lower than that of
juvenile NP [3].

In this work, we report the design of a new biphasic scaffold, made from natural biomaterial
collagen and GAG using a repeated lamination method. We hypothesize that the biphasic scaf-
fold will structurally and functionally mimic native disc, and that the number of layers of AF
lamellae used in the scaffold is an important factor, which affects its functional properties. Spe-
cifically, we describe fabrication of a biphasic scaffold using CG and PCM. We also evaluate
the histological, structural and functional parameters of the scaffold by benchmarking with
native disc, and investigate the layering effect of the AF lamellae.

Materials and Methods

Preparation of the NP-like CG core
The NP-like CG core was fabricated and used as the nucleus of the biphasic construct, as previ-
ously described [16]. In brief, acid soluble collagen solution (354236, BD Biosciences, San Jose,
CA, USA), ethylenediamine solution (EDA) (E26266, Sigma-Aldrich, USA) and 1-ethyl-3
(3-dimethylaminopropyl) carbodiimide (EDC) (E7750, Sigma-Aldrich) were mixed to give a
final concentrations of 0.037% collagen, 2.2M EDA and 0.044M EDC. The amounts of EDA
and EDC corresponded to 5000 and 300 molar multiples of the carboxyl groups on collagen,
respectively. The solution was mixed at room temperature on a sideway shaker at 30 rpm over-
night during which time the collagen became aminated. Aminated collagen was then retrieved
by dialysis against 0.02 M acetic acid at room temperature for 6 h, and then at 4°C for 2 days.
Aminated collagen and chondroitin-6-sulphate (C4384, Sigma-Aldrich) at 0.4% (w/v) were
mixed at a ratio of 1:1.5 (w/w) and centrifuged at the maximum speed (~3000 rpm) of a vor-
tex-mixer (Thermo Scientific, MA, USA) to produce insoluble CG, which was retrieved by cen-
trifugation at 16,100 g for 2 min (5415D, Eppendorf, Hamburg, Germany). The collected CG
was shaped with a cylindrical mould of 5 mm diameter, and air dried into a cylindrical block
for the next step (i.e., layering with PCM) of fabrication of the biphasic disc scaffold.

Fabrication of the biphasic constructs
The biphasic disc scaffold was fabricated by repeatedly laminating the NP-like CG core with
photochemically crosslinked collagen lamellae to mimic the AF, as shown in Fig 1. The photo-
chemical crosslinking procedure employed was a modified version of the one we previously
reported for fabricating collagen membranes [15]. In brief, at 4°C acid soluble collagen solution
was neutralized with sodium hydroxide and mixed with phosphate buffered saline (PBS) at pH
7.4 to prepare a 0.3% collagen gelling solution (w/v). One ml of the mixture was then trans-
ferred to a cylindrical mould of 16 mm diameter for gelation. At the start of gelation, the bot-
tom of the mould was immersed in PBS pre-warmed to 37°C, and the top of the mould was in
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contact with a chilled plate (~4°C) for 5 min. This temperature difference between the bottom
and top of the mould allowed just enough time for the dehydrated CG to be poured before it
solidified. Further incubation of the whole mould at 37°C for 30 min resulted in the CG being
encapsulated in a collagen hydrogel of 16 mm diameter and 5 mm tall (Fig 1A). This CG-gel
composite was soaked in rose Bengal solution (R3877, Sigma) at a concentration of 0.001% (w/
v) overnight (Fig 1C), and photochemically crosslinked by irradiating with an argon laser
(Innova 300C, Coherent, California, USA; 514 nm) for 125 sec from the top to the bottom at a
power of 200 mW (fluence = 25 J/cm2) (Fig 1D). The crosslinked CG-gel composite was dehy-
drated in a controllable manner by rolling on a piece of filter paper, until any loosely bound
water in the collagen gel was removed (Fig 1E). The dehydrated gel of the composite thus made
up one lamella (E1) of photochemically crosslinked collagen membrane surrounding the
nuclear CG. (Fig 1G) This lamination process was repeated by encapsulating E1 in the 2nd col-
lagen layer (Fig 1B), and the process was repeated until eventually, biphasic constructs

Fig 1. Series of images to show the fabrication of the biphasic scaffold an intervertebral disc. (A) A CG core was encapsulated in the first collagen
layer before crosslinking. (B) Some of the photochemically-crosslinked CG cores were then encapsulated in a further 1 to 9 layers of collagen. (C) Immersion
of the CG core with collagen layers in the photosensitizer, rose Bengal. (D) Irradiation of the construct with an argon laser at 514 nm for photochemical
crosslinking. (E) Dehydration of the CG containing the 1st collagen layer by rolling it on absorbent filter paper. (F) Dehydration of the CG core now
encapsulated in the 2nd to 10th collagen layers. (G) The rehydrated CG core in one of the AF-like collagen lamella (E1). (H) Rehydrated CG core in two to ten
collagen lamellae (E2 to E10). (I) Condensed biphasic scaffold in top view. (J) Condensed biphasic scaffold in side view. (K) Rabbit disc harvest. (L) Native
rabbit disc in top view. (M) Native rabbit disc in side view.

doi:10.1371/journal.pone.0131827.g001
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containing 1, 2, 4 or 10 lamella(e) were obtained (Fig 1H). As a finishing step to further con-
dense the scaffold structure into a dense fibrous meshwork with appropriate dimensions and
to bring the construct to similar loaded physiologically conditions, biphasic constructs, right
before mechanically tested, were submitted to a pre-load, comprising of 150 sec at -0.6 MPa
and then 600 sec at -0.1 MPa. These stress values correspond to the pressure in a normal
human disc, such that the lower stress value was measured during lying down, and the higher
stress value was measured during standing [18].

Biomechanical Characterization
The biphasic scaffold and the disc were studied by unconfined compressive creep, dynamic
mechanical analysis (DMA) and recovery (creep under reduced stress), using a bioreactor
(ElectroForce 5210, BioDynamic System, Bose, Minnesota, USA) with 0.04 mm porous platens.
Samples were immersed in PBS at room temperature overnight prior to the test, and then at
37°C throughout the test. A testing protocol was modified from two previous reports studying
native IVD tissues [19,20]. The test in the current study was load-controlled and consisted of
four stages, as shown in Fig 2. These are as follows: (A) Pre-load: ramping to and dwelling at
0.6 MPa for 150 sec, then ramping to and dwelling at 0.1 MPa for 600 sec. (B) Creep: ramping
to and dwelling at 0.6 MPa for 12,000 sec. (C) Dynamic load: applying sinusoidal stress
between 0.3 and 0.9 MPa at 0.1, 0.32, 1, 3.2 and 10 Hz (i.e., a linear log scale). The amplitude of
loading used in the DMA corresponded to the normal range measured during daily activities
(i.e., between -0.3 and -0.9 MPa) [18]. (D) Recovery: ramping to and dwelling at 0.1 MPa for
12,000 sec. The rate of ramp in Stages A, B and D were 10 N/s. In addition, the data acquisition
rate was 20 Hz for the first 300 sec in Stage A, when the displacement changed rapidly, and
then 1 Hz for Stages B and D. The acquisition rate was 500 Hz for Stage C, which is the default
rate used by the machine software. For Stages B and D, the load-displacement data were split
into two parts according to the load change, and fitted to model equations for the least square
error using Excel Solver (Microsoft, Washington, USA). Thus, data describing a ramp section
with ramped load within the first two sec of a stage, was fitted to Eq 1 for elastic compliance (E,
in mm/N), while the remaining data, with steady load, was fitted to Eq 2 for viscous compliance
(V, in mm/N), time constant (T, in s) and stretch constant (B, dimensionless), where t is time
(in seconds), s(t) is displacement (in mm) at time t and F(t) is load (N) at time t.

Ex : sðtÞ � sð0Þ ¼ FðtÞ � E ð0 � t < 2Þ ð1Þ

Ex : sðtÞ � sð2Þ ¼ FðtÞ � V � 1� e�
t�2
Tð ÞB� �

ð2 < tÞ ð2Þ

With regards to Stage C, the WinTest DMA software (Bose) was used for data acquisition
and analysis. Dynamic stiffness (K�) and the damping factor (tan delta) from 0.1 Hz to 10 Hz
loading frequencies were obtained. Slopes of K� and tan delta against log frequency were
obtained during measurement of the association between the DMA parameters and the loading
frequency.

Histology and Immunohistology
After biomechanical characterization, scaffold samples were bisected along the vertical axis
and fixed with paraformaldehyde (30525-89-4, Merck, Hohenbrunn, Germany) at 4% (w/v) in
PBS at 4°C overnight. After washing with PBS to remove any unreacted fixative, samples were
incubated in sucrose (S5016, Sigma) at 30% (w/v) overnight, after which they were embedded
in optimal cutting temperature compound (OCT) at -30°C for cryosectioning. For histology,
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cryosections of 15 μmwere stained with Alcian blue to label GAGs. For immunohistology,
15 μm sections were incubated with H2O2 (H47055-4I, Oriental Chemicals & Lab. Supplies
Ltd., Tsuen Wan, Hong Kong) at 3% (v/v) for 15 min to remove endogenous peroxidase activ-
ity, followed by pepsin (at 5% (w/v); P7012, Sigma) at 37°C to expose epitopes. The sections
were then treated with blocking solution (i.e., bovine serum albumin; A4378, Sigma; at 1% (w/
v)) for 20 min, after which they were incubated with a mouse anti-type I collagen primary anti-
body (C2456, Sigma; used at 1:2,000 dilution) at 4°C overnight, and then a horse radish peroxi-
dase-tagged anti-mouse IgG secondary antibody (SC2005, SantaCruz, Texas, USA; at a
dilution of 1:800) for 1 h. Sections were then incubated with Vectastain ABC kit reagent
(PK4000, Vector Labs, CA, USA) for 30 min, followed by 3,3'-diaminobenzidine (K346811,
Dako, CA, USA) for 5 min, after which they were dehydrated through an increasing concentra-
tion gradient of ethanol and xylene, and mounted under DePex mounting medium. These sec-
tions were observed using light microscopy.

SEM characterization
After mechanical characterization, the bisected scaffold samples were fixed with glutaraldehyde
(G6257, Sigma) at 2.5% (v/v) in PBS at 4°C overnight. After washing with PBS, the samples

Fig 2. A representative stress-strain curve showing the four stage-loading protocol used for the native discs and biphasic constructs. Samples
were subjected to: pre-load (A) at 0.6 MPa for 150 sec and then 0.1 MPa for 600 sec; creep (B) at 0.6 MPa for 12,000 sec; dynamic load (C) at sine stresses
between 0.3 and 0.9 MPa at 0.1, 0.32, 1, 3.2 and 10 Hz (linear log scale); and recovery (D) at 0.1 MPa for 12,000 sec.

doi:10.1371/journal.pone.0131827.g002
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were dehydrated using an increasing concentration gradient of ethanol and then subjected to
critical point drying. Dehydrated samples were fractured, mounted and sputtered coated with
gold, and then observed with a Hitachi S4800 FEG scanning electron microscope.

Isolation of rabbit IVD for comparative studies with native discs
All protocols involving animals were approved by the Committee for the Use of Live Animals
in Teaching and Research of the University of Hong Kong. Two New Zealand white rabbits
(> 6 months old and ~ 3.5 kg in weight) were used. Three lumbar discs (two L1-2 and one L2-
3), with half of the adjacent vertebral bones, were isolated and frozen at -60°C. Before mechani-
cal characterization, the bones adjacent to the disc were polished with sandpaper to produce
smooth and parallel surfaces for fixation purpose. The discs were then soaked in PBS until the
end of the mechanical test.

Statistical Analysis
Quantitative data including the dimensions and mechanical properties were presented as the
mean ± 2 standard errors (SE). The dimensions of the native disc and biphasic scaffolds with
the various layers and at different stages of the test were analyzed and compared by two-way
ANOVA. Compliances (E and V), the time constant (T) and the stretch constant (B) obtained
from the creep and recovery tests, as well as the dynamic stiffness (K�) and damping factor
(tan delta) obtained from the DMA were analyzed by one-way ANOVA with appropriate post-
hoc tests. Simple linear regression analysis was performed to evaluate the linear trends during
the dimension and biomechanics analyses on the biphasic scaffolds with the different numbers
of AF lamellae. All the data analyses were performed with SPSS 19.0, and the significance level
was set at 0.05.

Results

Characterization of the biphasic scaffold
The biphasic IVD scaffolds are cylindrical in shape before they undergo the pre-load steo
before mechanical testing and they are disc-shaped after the tests (Fig 3A–3D). The pink
color of the scaffolds corresponds to the presence of the photosensitizer, rose Bengal. Fig 3E
shows the changes in diameter of the various sample groups. Two-way ANOVA indicated
that there was a significant change in the diameter for each group, before pre-load and after
the mechanical test (at p<0.001) and among all the groups, including the scaffolds of differ-
ent layers and the native discs (at p<0.001). In addition, Bonferroni’s post-hoc tests demon-
strated that the native discs exhibited significant differences when compared with the
biphasic scaffolds containing 1, 2 and 4 AF-like layers (at p< = 0.001) but not with scaffolds
comprised of 10 layers (p = 0.149). Furthermore, the diameter of the biphasic scaffolds sig-
nificantly and linearly increased as the number of layers increased, both before pre-load
(p<0.001, R2 = 0.856) and after the mechanical tests (p<0.001, R2 = 0.862). Fig 3F shows the
changes in height of the disc samples. Two-way ANOVA showed that there was significant
change in height among the different stages during the mechanical test (at p<0.001) and
among all groups including the scaffolds with the various numbers of layers and the native
discs (p = 0.045), although the latter was really marginal. Dunnett’s test showed that the disc
height appeared to be significantly different before and after the pre-load as well as the creep
test (p<0.001) but when we allowed for recovery, the height of the disc was not actually sig-
nificantly different (p = 0.123), suggesting that it was restored. Dunnett’s test also showed
that, when compared with the native discs, all the biphasic scaffolds with the different AF
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layers showed no significant difference in disc heights (p< = 0.267). Fig 3G shows the mean
percentage disc height recovery after the mechanical test. All the biphasic scaffolds indepen-
dent of the number of AF layers used, recovered to somewhere in the range of 82 to 89% of
the original disc height after pre-load, while the native discs showed 99% recovery. Although
the practical difference in the percentage recovery of the disc height between the biphasic
scaffolds and the native disc was only ~10%, one-way ANOVA still showed statistically sig-
nificant differences among groups (at p<0.001), and the difference between the native disc
and all the biphasic scaffolds was significant (at p< = 0.003), independent on how many AF
layers there were.

Fig 3. Gross appearance and dimension analysis of the samples in the different groups before and after biomechanical testing. (A-D) Gross
appearance of the biphasic scaffolds from side (A-B) and top (C-D) views before (A,C) and after (B,D) the mechanical tests. (E-G) Dimension analysis of the
biphasic scaffolds (with 1, 2, 4 and 10 layers of collagen lamellae) and the native disc controls at different stages during the mechanical test (i.e., before and
after pre-load, after the creep, and after the test). Bar graphs show: (E) disc diameter, (F) disc height, and (G) percentage of disc height recovery. Data are
expressed as mean+-2SE of n = 2–4 experiments.

doi:10.1371/journal.pone.0131827.g003
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Histology, Immunohistology and Ultrastructural analysis
Following the mechanical tests, the fabricated biphasic scaffold and native IVD constructs were
sectioned and stained with either Alcian blue or an antibody against type I collagen. The histo-
logical and ultrastructure appearance of a biphasic scaffold comprised of 4 layers of AF-like
collagen lamellae as shown in Fig 4A–4D, while the same characterization in native discs is
shown in Fig 4E–4H. Whereas the biphasic scaffolds did not have the endplate-vertebrae struc-
ture of the native discs (Fig 4E and 4F), the dimensions and structure of both were comparable,
except that the AF region in the biphasic scaffolds was thinner, being comprised of just 4 layers
of collagen lamellae (Fig 4A and 4B), when compared with the 15–40 layers in native discs (Fig
4E and 4F). In the biphasic IVD scaffold, the GAG-rich NP scaffold was surrounded by an AF-
like multi-lamellae structure, with a clear boundary. The NP scaffold was intensely stained
with Alcian blue, indicating the successful retention of GAGs within the collagen fibrous mesh-
work after both the fabrication process and the mechanical test. On the other hand, the AF
scaffold was not stained with the dye, and appeared pink due to the photosensitizer (Fig 4A).
Immunohistology of type I collagen showed positive staining throughout the fabricated con-
structs (Fig 4B). In comparison, the native disc showed a typical GAG-rich NP core sur-
rounded by multiple AF lamellae (Fig 4E and 4F), while type I collagen was mainly confined to
the AF region (Fig 4F). Ultrastructural analysis of the fabricated scaffolds demonstrated that
the AF region consisted of multiple interconnected lamellae structures when viewed at low
magnification (Fig 4C). At higher magnification (see insert, Fig 4C1), these structures were
resolved as randomly oriented, nano-sized collagen fibers. On the other hand, the AF lamellae
in the native disc consisted of well-organized fibers (Fig 4G) with nano-sized fibrils (Fig 4G1),
which are of comparable dimension to those found in the AF region of the biphasic scaffolds
(compare Fig 4G1 with Fig 4C1). Ultrastructural analysis of the NP core in the fabricated scaf-
fold showed thick and aggregated fibrous collagen structures intercalating with bead-like struc-
tures, which correspond to the co-precipitated GAGs (Fig 4D). For comparison, the insert (Fig
4D1) clearly shows the bead-like GAG structures in samples prior to the compaction procedure
during fabrication. The NP region of the native disc showed well organized strings of fibrils
covered with numerous bead-like GAG structures (Fig 4H), which were also present in the col-
lagen-GAG NP-like core of the biphasic structure (Fig 4D1).

Mechanical properties during creep and recovery phases
Fig 5A shows changes in elastic compliance (E, in mm/N) during creep. Biphasic scaffolds with
1, 2 and 4 layers of lamellae seemed to have higher compliance values than did those with 10
layers and the native disc, which have similar elastic compliance. However, one-way ANOVA
indicated that the difference was marginal (p = 0.067). Nevertheless, Dunnett’s post-hoc test
showed that there was significant difference between the native disc and the 4-layer scaffold
groups (p = 0.040) but not with the other groups including the 10-layer group (p> = 0.281).
Fig 5B shows changes in viscous compliance (V, in mm/N) during creep. One-way ANOVA
showed that there was significant difference in V among the different samples (p = 0.002)
while Dunnett’s T3 post-hoc test showed that the differences between the native disc and all
but the 2-layer groups were statistically significant (at p< = 0.049). Fig 5C shows changes in
the time constant (T, in sec) during creep. One-way ANOVA showed that there was no signifi-
cant difference among any of the groups (p = 0.571). Fig 5D shows the stretch constant (B)
during creep. One-way ANOVA showed that there was significant difference in B among the
different groups (p = 0.001), while Bonferroni’s post-hoc test showed that native disc was sig-
nificantly different from all the fabricated biphasic scaffolds (at p< = 0.031). Linear regression
analyses demonstrated that there was no significant linear trend in the mechanical properties
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Fig 4. Histomorphometric and ultrastructural characterization of the fabricated biphasic scaffold and native disc. (A-D) Fabricated biphasic scaffold
and (E-H) native disc; (A&E) Alcian blue staining and (B&F) immunohistochemistry of type I collagen. (C-D & G&H) SEM images. (C) AF-like collagen
lamellae; (D) NP-like core with compaction; (D1) NP-like core without compaction; (G) AF lamellae in the native disc; (H) NP core in the native disc. Scale
bars are 500 μm (for A-B & E-F); 10 μm (for C&G); 1 μm (for G1) and 500 nm (for D-D1&H).

doi:10.1371/journal.pone.0131827.g004
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Fig 5. Bar charts showing the mechanical properties of samples during the creep and recovery
phases of the mechanical tests. The mechanical properties of the fabricated biphasic scaffolds and native
IVD (A-D) during the creep and (E-H) recovery phases. (A&E) Elastic compliance (E, mm/N); (B&F) Viscous
compliance (V, mm/N); (C&G) Time constants (T, seconds) and (D&H) Stretch constants (B). Data are
expressed as mean±2SE of n = 2–4 experiments.

doi:10.1371/journal.pone.0131827.g005
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as the number of layers increased (p>0.05). Instead, the association between the compliance
parameters and the number of layers in the biphasic scaffold was in general non-linear, such
that the compliance parameters of 1, 2 and 4 layers were higher than the 10-layer group, which
was similar to that of the native disc. Fig 5E shows the changes in elastic compliance (E) during
recovery; one-way ANOVA showed that the difference in E among the different groups was
insignificant (p = 0.493). Fig 5F shows the changes in viscous compliance (V) during recovery;
in this case, one-way ANOVA showed that there was a significant difference in V among the
different samples (p = 0.040), while Dunnett’s test showed that the difference between the
native disc and the 4-layer group was statistically significant (p = 0.024). Fig 5G shows the
changes in the time constant (T) during recovery; here, one-way ANOVA showed that the dif-
ference was not statistically significant (p = 0.099). Fig 5H shows changes in the stretch con-
stant (B) during recovery; one-way ANOVA showed that the difference was statistically
significant (at p<0.001) while Bonferroni’s post-hoc test indicated that native disc was signifi-
cantly different from all the fabricated biphasic scaffolds (at p< = 0.001). Linear regression
analyses showed that there was no significant linear trend in the mechanical properties as the
number of layers increased (p>0.05). Instead, the association between the number of layers of
the biphasic scaffold and the mechanical parameters was in general non-linear. Raw data on
the dimension and mechanical parameters of the constructs during the mechanical tests were
included as Supplementary Information.

Dynamic Mechanical Analysis (DMA)
Fig 6 shows the changes in dynamic stiffness (K�) and the damping factor (tan delta) of sam-
ples at different loading frequencies using a log scale during DMA. Linear regression analyses
showed that apart from a few exceptions in the 1-layer and 2-layer groups, all the groups
showed a significant linear relationship (Fig 6A) between the dynamic stiffness and log loading
frequency (at p< = 0.032). Although the overall values measured for the 10-layer group were
higher than other groups, the slopes of the K�-log frequency curves (Fig 6B) were similar
among all the groups including the native disc (one-way ANOVA, p = 0.149). Similarly, linear
regression analyses showed that apart from a few exceptions in the 1-layer group, all the groups
showed a significant linear relationship (Fig 6C) between the damping factor and log loading
frequency (at p< = 0.05). The slopes of the tangent delta-log frequency curves (Fig 6D) were
not significantly different among different groups (one-way ANOVA, p = 0.133) although
Dunnett’s post-hoc test showed a significant difference between the native disc and the
10-layer group (p = 0.031).

Discussion

Structural similarities and differences between the fabricated biphasic
scaffold and the native disc
The current biphasic scaffold was designed to mimic the structure of the matrix in a native disc
such that it consisted of both NP and AF components. The NP-like component was an isotopic
GAG-rich collageneous structure that simulated the NP matrix of a native disc in terms of its
high GAG/HYP ratio and similar ultra-structural properties, as demonstrated previously [16].
Alcian blue staining of the biphasic scaffold showed the retention of GAGs in the NP-like core
even after the fabrication process and the mechanical tests, which involved repeated washing
and dehydration as well as compression and recovery. In the biphasic design, the NP-like core
was laminated with multiple layers of photochemically crosslinked collagen gel. Nevertheless,
such a gel (even one that is photochemically crosslinked), is still a hydrogel, comprising of
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>85% water [21] and a loose and open fibrous collagen meshwork [22]. Additional compac-
tion procedures, including controlled dehydration via rolling on a water-absorbing filter mem-
brane, and mechanical pre-loading via compression with a bioreactor were used to further
condense the collagen hydrogel into a lamellae-like structure with a dense collagen meshwork.
Before pre-loading, the construct had a greater height and smaller diameter than the native
discs, but after unconfined pre-loading with free lateral deformation, the height of the sample
decreased and the diameter increased to more closely imitate the dimensions of a native disc.
As a result, the AF-like component simulated the AF matrix of a native disc in terms of the
thin membrane-like structure and dense nanofibrous collagen meshwork. Preliminary studies
on photochemically crosslinked collagen membranes provide hope that tensile properties may
be similar to that of annulus fibrosus [15, 21] but it was not tested using the current fabrication
method. The current scaffold design by no means reproduced the exact structure of the native
disc, as it exhibited several major differences that deserve future optimization. Firstly, in the
native AF, the lamellae are packed and interconnected by elastin fibres, and possesses radial

Fig 6. Dynamic stiffness and damping factor of samples during the dynamic mechanical analysis (DMA). (A) Line chart of the dynamic stiffness
against the log loading frequency. (B) Bar chart showing the slope values measured for the dynamic stiffness-log loading frequency curves (mean+-2SE,
n = 2–4). (C) Line charts of the damping factor (tangent delta) against log loading frequency; D: Bar chart showing the slopes of the tangent delta-log loading
frequency curves (mean+-2SE, n = 2–4).

doi:10.1371/journal.pone.0131827.g006
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transition of structures and properties towards the native NP. Our histological analysis showed
that the collagen lamellae in the construct were loosely attached to each other. This might affect
the mechanical performance of the construct as the lamellae could slip upon loading, especially
during multiple laminations. This problem is likely to be resolved when cells are seeded in the
constructs, as they will remodel the scaffolds and stimulate the photochemically-crosslinked
collagen lamellae to become more inter-connected, as demonstrated previously in a subcutane-
ous implantation model [15]. Secondly, the AF-like component doesn’t have the same type of
angle-ply structure that is exhibited by the native AF. Such a structure has previously been
achieved using electrospun polymer fibers with alignment [11–13] and has shown to be impor-
tant in achieving the functional properties of AF constructs [11]. In our design, we aimed to
fabricate effective dense collagen lamellae before stimulating the functional remodeling of
seeded cells. We achieved this by using physiologically relevant mechanical loading, including
compression and torsion, which has previously been shown to promote the preferred align-
ment of human mesenchymal stem cells in our collagen encapsulation system [23–25]. Thirdly,
the NP-like component of the fabricated biphasic scaffold contained type I collagen. Even
though this was chemically modified by amination [16], it is different from the type II collagen
that is present in native discs. We chose to use type I rather than type II collagen due to its
abundance and superior gelation properties. In addition, we have previously shown that many
cells, including NP cells [26,27], and chondrocytes [28], as well as chondrogenically differenti-
ating [29,30] and osteogenically differentiating [31] mesenchymal stem cells, are able to
remodel a template comprised of a type I collagen meshwork by synthesizing extracellular
matrix, whereby one of the components is type II collagen. We therefore expect that when cells
are introduced into NP-like components, they will be able to remodel the template type I colla-
gen into a type II collagen-rich matrix in a similar way to that demonstrated for rabbit NP cells
in our previous studies [26,27].

Similarities and differences in the mechanical properties between the
fabricated biphasic scaffold and native disc
An ideal disc scaffold is characterized by its ability to recover to its own height over repeated
diurnal cycles of physiological loading in human discs but most bioengineered designs so far
failed to mimic this mechanical function of the native disc. We showed that all the fabricated
biphasic constructs, irrespective of the number of lamellae used, recovered to between 82–89%
of their original height, which is approaching the 99% recovery achieved by native discs but
still statistically significantly. As the recovery in disc height was independent of the number of
the AF lamellae, this indicates that the recovery process is mainly influenced by the fluid
replacement function of the NP-component rather than the elastic collagen meshwork rebound
of the AF component. This is indeed a special feature of the mechanical function of the native
disc while further optimization is necessary to achieve full recovery of lost disc height upon
loading. Secondly, the elastic compliance represents the slope of force-displacement curve dur-
ing the initial stage of creep or recovery, and is the elastic contribution of the solid collagen
meshwork upon loading. Upon creep, all but the 4-layer scaffold showed similar elastic compli-
ance to that of the native disc. This is due to the fact that in scaffolds with 1 and 2 layers, the
pre-loading procedure over-compacts the scaffolds, leading to a lower elastic compliance of the
elastic collagen meshwork than it does in scaffolds comprised of 4 layers. While this compac-
tion effect is less prominent in scaffolds of 4 and 10 layers, the layering effect takes over after 4
layers. Thus, with 10 cycles of photochemical crosslinking in the 10-layer constructs, the elastic
compliance is lower than in scaffolds with 4 layers, and hence they again exhibit a similar com-
pliance to that of native disc. Upon recovery, the elastic compliance of all the biphasic scaffolds

Biphasic Scaffold for Engineering Intervertebral Disc

PLOS ONE | DOI:10.1371/journal.pone.0131827 June 26, 2015 14 / 18



was similar to that of the native disc. Thirdly, viscous compliance represents the magnitude of
time-dependent deformation after the stress was changed from -0.1 to -0.6 MPa in compres-
sion, and from -0.6 to -0.1 MPa in recovery. This magnitude refers to the final equilibrium
state and is not related to either the time or deformation pattern. The viscous compliance was
proposed to be related to the volume of fluid being displaced out of a disc by compression [19].
All the biphasic scaffolds (independent of the number of layers used) showed significantly
higher viscous compliance and hence more fluid displacement, than the native disc during
creep. This might be improved by further increasing the number of AF-like layers. Upon recov-
ery, all but the 4-layer group showed similar viscous compliance and hence fluid re-absorption,
when compared with that in the native disc. This is likely to be due to the over-compaction
effect of the lower AF-number groups and the layering effects of the 10-layer group. Finally,
the stretch constant describes the pattern of the time dependent strain, which might corre-
spond to the path of fluid being removed from and absorbed into the disc [19]. A stretch value
of 1 represents a normal exponential growth curve of strain (in which the same portion of the
remaining strain is covered at equal time intervals), whereas a stretch value less than 1 repre-
sents a stretched strain curve (in which a larger portion of the remaining strain is covered at
earlier time intervals, and the portion being covered diminishes in successive time intervals).
This study showed that all the biphasic scaffolds showed lower stretch constants than that of
native discs in both the creep and recovery stages, and this was independent of the number of
AF layers. This difference in the path (including the source and direction) of fluid displace-
ment, between the fabricated biphasic scaffolds and the native disc may be due to the absence
of the endplate and vertebrae structures in the former. Therefore, the inclusion of a vertebrae-
endplate-like subunit in the design might improve the mechanical performance of the biphasic
scaffold and presents the goal of our future investigation. We demonstrated the feasibility of
this idea in a recent study, where we incorporated a mesenchymal stem cell and collagen-based
tri-layered osteochondral subunit that we previously developed [32], into a bioengineered spi-
nal motion segment prototype [23].

Dynamic mechanical performance of the fabricated biphasic scaffolds
and native disc
Loading frequency-dependent changes in the mechanical properties of a spinal motion seg-
ment are important parameters in evaluating disc degeneration and emerging therapies [33].
The dynamic compression stiffness in a healthy human spinal motion segment increases in a
linear manner with the log loading frequency [33,34]. This may be related to the stiffening and
fluid flow effects, which stimulate increased transport of fluid and ions, and higher level of
GAGs in the central NP at high dynamic loading frequency as the disc is compressed [33,35].
This frequency-dependent change in the dynamic stiffness was lost when the NP was removed
by puncture injury [36,37], but was recovered when silicon polymers were injected into the
disc [38]. Moreover, the frequency-dependent change in disc dynamic stiffness is associated
with changes in the extracellular matrix upon protease digestion and crosslinking treatment in
rat spinal motion segments [19,39], suggesting that the performance determined in the DMA
is a sensitive parameter revealing changes in matrix structural and compositional changes. In
the current study, all the biphasic scaffolds and native discs showed similar DMA performance,
with a significant linear relationship between the dynamic stiffness and log loading frequency.
The 10-layer biphasic scaffolds showed an even higher dynamic stiffness than the native discs.
This may be due to the repeated cycles of en-sheathing, controlled dehydration and photo-
chemical crosslinking, all strengthening the AF-like lamellae. During the DMA, all the biphasic
scaffolds showed similar frequency-dependent damping behavior, when compared with that of
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the native discs, although the latter appeared to be non-linear. This difference may be due to
multiple factors affecting the damping behavior of materials including the difference in geome-
try between the biphasic scaffolds and the native disc. In vivo, IVD are exposed to a very com-
plicated mechanical environment. The current study only tested the compression mechanical
properties upon creep and recovery, as well as the dynamic mechanical analysis. Other
mechanical properties of the biphasic scaffolds under different modes of mechanical loading
such as torsion, are to be investigated in the future.

Conclusions
The fabricated biphasic scaffold reported in this study structurally mimics the native IVD with
a collagen-GAG-rich NP core and a strengthened PCM AF scaffold. The repeated lamination
process was compatible with the NP core such that the collagen-GAG-rich matrix was well
retained within the AF-like lamellae. The different biphasic scaffolds were also shown to par-
tially mimic the mechanical function of native disc. The disc height of all the scaffolds recov-
ered by 82–89% following the mechanical test, although this was shown to be significantly
different from the 99% recovery exhibited by the native disc. However, the mode of disc height
recovery, (i.e., being NP-dependent and AF-independent) was shown to mimic the unique fea-
ture of native discs in the fluid replacement function. Biphasic scaffolds with 10 AF-like lamel-
lae had the best overall mechanical performance among the various designs, owing to its
similarity with native disc in most aspects, including elastic compliances during creep and
recovery, and viscous compliance during recovery. The dynamic mechanical analysis showed
that the dynamic stiffness and damping factor of all the biphasic scaffolds had a similar perfor-
mance to that of the native disc. This study provides new evidence to facilitate future progress
in the rationalized design and development of a biomimetic and mechanically viable biphasic
scaffold for IVD tissue engineering and subsequent therapeutic applications.

Supporting Information
S1 Table. Data on dimensions and mechanical properties at different stages during the
mechanical test. Dimensions before test, after pre-load, after creep test, after mechanical test
(Height, percentage of height recovery, diameter, area and volume); Mechanical parameters at
stage 1 creep: Elastic compliance (Ec, mm/N); Viscous compliance (Vc, mm/N); Time con-
stants (Tc, seconds) and Stretch constants (Bc); and stage 3 recovery: Elastic compliance (Er,
mm/N); Viscous compliance (Vr, mm/N); Time constants (Tr, seconds) and Stretch constants
(Br).
(DOCX)
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