7,653 research outputs found

    The relationship between childhood adversity and violence to others among individuals with psychosis: a review and meta-analysis

    Get PDF
    Background: There is a growing body of literature identifying a relationship between experiences of child abuse and symptoms of psychosis in adults. However, the impact of this relationship on risk of violence has not been systematically explored. Aims: This meta-analysis aimed to consider the influence of childhood abuse on the risk of violence amongst individuals with psychosis. Method: Five bibliographic databases and two grey literature resources were systematically searched to identify quantitative research which measured risk of violence and experiences of childhood maltreatment in individuals with psychosis. Risk of bias for each study was assessed under pre-defined criteria. Logged odds ratios were synthesised quantitatively in a meta-analysis. Results: A total of 6298 studies were identified, 11 of which were included in the final analysis (N = 2215), all studies were of a cross-sectional or case-control design. Individuals with psychotic illnesses who reported historical child maltreatment were at approximately twice the risk of perpetrating violence than patients who reported no early abuse (OR = 2.46 (95% CI = 1.91 – 3.16). There was no statistical heterogeneity between main effects (τ = 0.00; Χ² = 8.87, df = 10, p = 0.54, I² = 0%). Discussion: Risk assessments and interventions may benefit from considering the unique contribution of trauma to violence in this population. Future research considering the interaction between childhood experiences and other risk factors for violence in this population, including specific symptoms of psychosis, would inform the current findings. Findings are limited by the lack of longitudinal research in this area, and there was some evidence of publication bias

    Maximally Symmetric Minimal Unification Model SO(32) with Three Families in Ten Dimensional Space-time

    Full text link
    Based on a maximally symmetric minimal unification hypothesis and a quantum charge-dimension correspondence principle, it is demonstrated that each family of quarks and leptons belongs to the Majorana-Weyl spinor representation of 14-dimensions that relate to quantum spin-isospin-color charges. Families of quarks and leptons attribute to a spinor structure of extra 6-dimensions that relate to quantum family charges. Of particular, it is shown that 10-dimensions relating to quantum spin-family charges form a motional 10-dimensional quantum space-time with a generalized Lorentz symmetry SO(1,9), and 10-dimensions relating to quantum isospin-color charges become a motionless 10-dimensional quantum intrinsic space. Its corresponding 32-component fermions in the spinor representation possess a maximal gauge symmetry SO(32). As a consequence, a maximally symmetric minimal unification model SO(32) containing three families in ten dimensional quantum space-time is naturally obtained by choosing a suitable Majorana-Weyl spinor structure into which quarks and leptons are directly embedded. Both resulting symmetry and dimensions coincide with the ones of type I string and heterotic string SO(32) in string theory.Comment: 17 pages, RevTex, published version with minor typos correcte

    All-optical hyperpolarization of electron and nuclear spins in diamond

    Get PDF
    Low thermal polarization of nuclear spins is a primary sensitivity limitation for nuclear magnetic resonance. Here we demonstrate optically pumped (microwave-free) nuclear spin polarization of 13C^{13}\mathrm{C} and 15N^{15}\mathrm{N} in 15N^{15}\mathrm{N}-doped diamond. 15N^{15}\mathrm{N} polarization enhancements up to 2000-2000 above thermal equilibrium are observed in the paramagnetic system Ns0\mathrm{N_s}^{0}. Nuclear spin polarization is shown to diffuse to bulk 13C^{13}\mathrm{C} with NMR enhancements of 200-200 at room temperature and 500-500 at 240 K\mathrm{240~K}, enabling a route to microwave-free high-sensitivity NMR study of biological samples in ambient conditions.Comment: 5 pages, 5 figure

    Chiral molecule adsorption on helical polymers

    Full text link
    We present a lattice model for helicity induction on an optically inactive polymer due to the adsorption of exogenous chiral amine molecules. The system is mapped onto a one-dimensional Ising model characterized by an on-site polymer helicity variable and an amine occupancy one. The equilibrium properties are analyzed at the limit of strong coupling between helicity induction and amine adsorption and that of non-interacting adsorbant molecules. We discuss our results in view of recent experimental results

    High throughput particle analysis: combining dielectrophoretic particle focussing with confocal optical detection

    No full text
    A microflow cytometer has been fabricated that detects and counts fluorescent particles flowing through a microchannel at a high speed based upon their fluorescence emission intensity. Dielectrophoresis is used to continuously focus particles within the flowing fluid stream into the centre of the device, which is 40 μm high and 250 μm wide. The method ensures that all the particles pass through an interrogation region approximately 5 μm in diameter, which is created by focusing a beam of light into a spot. The functioning of the device was demonstrated by detecting and counting fluorescent latex particles at a rate of up to 250 particles/s. A mixture of three different populations of latex particle was used, each sub-population with a distinct level of fluorescent intensity. The device was evaluated by comparison with a conventional fluorescent activated cell sorter (FACS) and numerical simulation demonstrated that for 6 mico m beads, and for this design of chip the theoretical throughput is of the order of 1000 particles/s (corresponding to a particle velocty of 1 mm/s)

    Effects of Residue Background Events in Direct Dark Matter Detection Experiments on the Determination of the WIMP Mass

    Full text link
    In the earlier work on the development of a model-independent data analysis method for determining the mass of Weakly Interacting Massive Particles (WIMPs) by using measured recoil energies from direct Dark Matter detection experiments directly, it was assumed that the analyzed data sets are background-free, i.e., all events are WIMP signals. In this article, as a more realistic study, we take into account a fraction of possible residue background events, which pass all discrimination criteria and then mix with other real WIMP-induced events in our data sets. Our simulations show that, for the determination of the WIMP mass, the maximal acceptable fraction of residue background events in the analyzed data sets of O(50) total events is ~20%, for background windows of the entire experimental possible energy ranges, or in low energy ranges; while, for background windows in relatively higher energy ranges, this maximal acceptable fraction of residue background events can not be larger than ~10%. For a WIMP mass of 100 GeV with 20% background events in the windows of the entire experimental possible energy ranges, the reconstructed WIMP mass and the 1-sigma statistical uncertainty are ~97 GeV^{+61%}_{-35%} (~94 GeV^{+55%}_{-33%} for background-free data sets).Comment: 27 pages, 22 eps figures; v2: revised version for publication, references added and update

    A therapeutic potential for marine skeletal proteins in bone regeneration

    Get PDF
    A vital ingredient for engineering bone tissue, in the culture dish, is the use of recombinant matrix and growth proteins to help accelerate the growth of cultivated tissues into clinically acceptable quantities. The skeletal organic matrices of calcifying marine invertebrates are an untouched potential source of such growth inducing proteins. They have the advantage of being ready-made and retain the native state of the original protein. Striking evidence shows that skeleton building bone morphogenic protein-2/4 (BMP) and transforming growth factor beta (TGF-β) exist within various marine invertebrates such as, corals. Best practice mariculture and the latest innovations in long-term marine invertebrate cell cultivation can be implemented to ensure that these proteins are produced sustainably and supplied continuously. This also guarantees that coral reef habitats are not damaged during the collection of specimens. Potential proteins for bone repair, either extracted from the skeleton or derived from cultivated tissues, can be identified, evaluated and retrieved using chromatography, cell assays and proteomic methods. Due to the current evidence for bone matrix protein analogues in marine invertebrates, together with the methods established for their production and retrieval there is a genuine prospect that they can be used to regenerate living bone for potential clinical use. © 2013 by the authors; licensee MDPI

    Adipose stem cell coating of biomimetic β-TCP macrospheres by use of laboratory centrifuge

    Get PDF
    Biomimetic materials such as coral exoskeletons possess unique architectural structures with a uniform and interconnected porous network that can be beneficial as a scaffold material. In addition, these marine structures can be hydrothermally converted to calcium phosphates, while retaining the original structural properties. The ability of biomaterials to stimulate the local microenvironment is one of the main focuses in tissue engineering, and directly coating the scaffold with stem cells facilitates future potential applications in therapeutics and regenerative medicine. In this article we describe a new and simple method that uses a laboratory centrifuge to coat hydrothermally derived beta-tricalcium phosphate macrospheres from coral exoskeleton with stem cells. In this research the optimal seeding duration and speed were determined to be 1 min and 700 g. Scanning electron micrographs showed complete surface coverage by stem cells within 7 days of seeding. This study constitutes an important step toward achieving functional tissue-engineered implants by increasing our understanding of the influence of dynamic parameters on the efficiency and distribution of stem cell attachment to biomimetic materials and how stem cells interact with biomimetic materials. © Copyright 2013, Mary Ann Liebert, Inc. 2013

    Periplakin, a novel component of cornified envelopes and desmosomes that belongs to the plakin family and forms complexes with envoplakin

    Get PDF
    The cornified envelope is a layer of transglutaminase cross-linked protein that is assembled under the plasma membrane of keratinocytes in the outermost layers of the epidermis. We have determined the cDNA sequence of one of the proteins that becomes incorporated into the cornified envelope of cultured epidermal keratinocytes, a protein with an apparent molecular mass of 195 kD that is encoded by a mRNA with an estimated size of 6.3 kb. The protein is expressed in keratinizing and nonkeratinizing stratified squamous epithelia and in a number of other epithelia. Expression of the protein is upregulated during the terminal differentiation of epidermal keratinocytes in vivo and in culture. Immunogold electron microscopy was used to demonstrate an association of the 195-kD protein with the desmosomal plaque and with keratin filaments in the differentiated layers of the epidermis. Sequence analysis showed that the 195-kD protein is a member of the plakin family of proteins, to which envoplakin, desmoplakin, bullous pemphigoid antigen 1, and plectin belong. Envoplakin and the 195-kD protein coimmunoprecipitate. Analysis of their rod domain sequences suggests that the formation of both homodimers and heterodimers would be energetically favorable. Confocal immunofluorescent microscopy of cultured epidermal keratinocytes revealed that envoplakin and the 195-kD protein form a network radiating from desmosomes, and we speculate that the two proteins may provide a scaffolding onto which the cornified envelope is assembled. We propose to name the 195-kD protein periplakin

    Tricritical behaviour of Ising spin glasses with charge fluctuations

    Full text link
    We show that tricritical points displaying unusal behaviour exist in phase diagrams of fermionic Ising spin glasses as the chemical potential or the filling assumes characteristic values. Exact results for infinite range interaction and a one loop renormalization group analysis of thermal tricritical fluctuations for finite range models are presented. Surprising similarities with zero temperature transitions and a new T=0T=0 tricritical point of metallic quantum spin glasses are derived.Comment: 4 pages, 1 Postscript figure, minor change
    corecore