58 research outputs found

    Age and growth of an outbreaking Acanthaster cf. solaris population within the Great Barrier Reef

    Get PDF
    Despite having been studied for more than 40 years, much about the basic life history of crown-of-thorns starfish (CoTS; Acanthaster spp.) remains poorly understood. Size at age-a key metric of productivity for any animal population-has yet to be clearly defined, primarily due to difficulties in obtaining validated ages and potentially indeterminate growth due to factors such as starvation; within-population variability is entirely unknown. Here we develop age and growth estimates for an outbreaking CoTS population in Australian waters by integrating prior information with data from CoTS collected from multiple outbreaking reefs. Age estimates were made from un-validated band counts of 2038 individual starfish. Results from our three-parameter von Bertalanffy Bayesian hierarchical model show that, under 2013-2014 outbreak conditions, CoTS on the GBR grew to a 349 ( 326, 380) mm (posterior median (95% uncertainty interval)) total diameter at a 0.54 (0.43, 0.66) intrinsic rate of increase. However, we also found substantial evidence (Delta DIC > 200) for inter-reef variability in both maximum size (SD 38 (19, 76)) and intrinsic rate of increase (SD 0.32 (0.20, 0.49)) within the CoTS outbreak initiation area. These results suggest that CoTS demography can vary widely with reef-scale environmental conditions, supporting location-based mechanisms for CoTS outbreaks generally. These findings should help improve population and metapopulation models of CoTS dynamics and better predict the potential damage they may cause in the future

    Determinants of cord blood adipokines and association with neonatal abdominal adipose tissue distribution

    Get PDF
    Background Cord blood leptin and adiponectin are adipokines known to be associated with birth weight and overall infant adiposity. However, few studies have investigated their associations with abdominal adiposity in neonates. We examined maternal factors associated with cord blood leptin and adiponectin, and the association of these adipokines with neonatal adiposity and abdominal fat distribution measured by magnetic resonance imaging (MRI) in an Asian mother-offspring cohort. Methods Growing Up in Singapore Towards healthy Outcomes (GUSTO), is a prospective mother-offspring birth cohort study in Singapore. Cord blood plasma leptin and adiponectin concentrations were measured using Luminex and Enzyme-Linked Immunosorbent Assay respectively in 816 infants. A total of 271 neonates underwent MRI within the first 2-weeks after delivery. Abdominal superficial (sSAT), deep subcutaneous (dSAT), and intra-abdominal (IAT) adipose tissue compartment volumes were quantified from MRI images. Multivariable regression analyses were performed. Results Indian or Malay ethnicity, female sex, and gestational age were positively associated with cord blood leptin and adiponectin concentrations. Maternal gestational diabetes (GDM) positively associated with cord blood leptin concentrations but inversely associated with cord blood adiponectin concentrations. Maternal pre-pregnancy body mass index (BMI) showed a positive relationship with cord blood leptin but not with adiponectin concentrations. Each SD increase in cord blood leptin was associated with higher neonatal sSAT, dSAT and IAT; differences in SD (95% CI): 0.258 (0.142, 0.374), 0.386 (0.254, 0.517) and 0.250 (0.118, 0.383), respectively. Similarly, each SD increase in cord blood adiponectin was associated with higher neonatal sSAT and dSAT; differences in SD (95% CI): 0.185 (0.096, 0.274) and 0.173 (0.067, 0.278), respectively. The association between cord blood adiponectin and neonatal adiposity was observed in neonates of obese mothers only. Conclusions Cord blood leptin and adiponectin concentrations were associated with ethnicity, maternal BMI and GDM, sex and gestational age. Both adipokines showed positive association with neonatal abdominal adiposity.Peer reviewe

    The Kynurenine Pathway Metabolites in Cord Blood Positively Correlate With Early Childhood Adiposity

    Get PDF
    Context The kynurenine pathway generates metabolites integral to energy metabolism, neurotransmission, and immune function. Circulating kynurenine metabolites positively correlate with adiposity in children and adults, yet it is not known whether this relationship is present already at birth. Objective In this prospective longitudinal study, we investigate the relationship between cord blood kynurenine metabolites and measures of adiposity from birth to 4.5 years. Methods Liquid chromatography-tandem mass spectrometry was used to quantify cord blood kynurenine metabolites in 812 neonates from the Growing Up in Singapore Towards healthy Outcomes (GUSTO) study. Fat percentage was measured by air displacement plethysmography and abdominal adipose tissue compartment volumes; superficial (sSAT) and deep subcutaneous (dSAT) and internal adipose tissue were quantified by magnetic resonance imaging at early infancy in a smaller subset of neonates, and again at 4 to 4.5 years of age. Results Cord blood kynurenine metabolites appeared to be higher in female newborns, higher in Indian newborns compared with Chinese newborns, and higher in infants born by cesarean section compared with vaginal delivery. Kynurenine, xanthurenic acid, and quinolinic acid were positively associated with birthweight, but not with subsequent weight during infancy and childhood. Quinolinic acid was positively associated with sSAT at birth. Kynurenic acid and quinolinic acid were positively associated with fat percentage at 4 years. Conclusion Several cord blood kynurenine metabolite concentrations were positively associated with birthweight, with higher kynurenic acid and quinolinic acid correlating to higher percentage body fat in childhood, suggesting these cord blood metabolites as biomarkers of early childhood adiposity.Peer reviewe

    Automated Machine Learning (AutoML)-Derived Preconception Predictive Risk Model to Guide Early Intervention for Gestational Diabetes Mellitus

    Get PDF
    The increasing prevalence of gestational diabetes mellitus (GDM) is contributing to the rising global burden of type 2 diabetes (T2D) and intergenerational cycle of chronic metabolic disorders. Primary lifestyle interventions to manage GDM, including second trimester dietary and exercise guidance, have met with limited success due to late implementation, poor adherence and generic guidelines. In this study, we aimed to build a preconception-based GDM predictor to enable early intervention. We also assessed the associations of top predictors with GDM and adverse birth outcomes. Our evolutionary algorithm-based automated machine learning (AutoML) model was implemented with data from 222 Asian multi-ethnic women in a preconception cohort study, Singapore Preconception Study of Long-Term Maternal and Child Outcomes (S-PRESTO). A stacked ensemble model with a gradient boosting classifier and linear support vector machine classifier (stochastic gradient descent training) was derived using genetic programming, achieving an excellent AUC of 0.93 based on four features (glycated hemoglobin A(1c) (HbA(1c)), mean arterial blood pressure, fasting insulin, triglycerides/HDL ratio). The results of multivariate logistic regression model showed that each 1 mmol/mol increase in preconception HbA(1c) was positively associated with increased risks of GDM (p = 0.001, odds ratio (95% CI) 1.34 (1.13-1.60)) and preterm birth (p = 0.011, odds ratio 1.63 (1.12-2.38)). Optimal control of preconception HbA(1c) may aid in preventing GDM and reducing the incidence of preterm birth. Our trained predictor has been deployed as a web application that can be easily employed in GDM intervention programs, prior to conception.Peer reviewe

    Metabolic health status and fecundability in a Singapore preconception cohort study

    Get PDF
    Background: Obesity compromises metabolic health and female fertility, yet not all obese women are similar in metabolic status. The extent to which fecundability is influenced by the metabolic health status of women who are overweight or obese before conception is unknown. Objective: This study aimed to: (1) determine the metabolic health status, and (2) examine the association between metabolic health status and fecundability of overweight and obese women trying to conceive in the Singapore PREconception Study of long-Term maternal and child Outcomes cohort study. Study Design: We conducted a prospective preconception cohort study of Asian women (Chinese, Malay, and Indian) aged 18 to 45 years trying to conceive who were treated from 2015 to 2017 in KK Women's and Children's Hospital in Singapore (n=834). We defined women to have metabolically unhealthy status if they: (1) met 3 or more modified Joint Interim Statement metabolic syndrome criteria; or (2) had homeostasis model assessment-insulin resistance index ≥2.5. Body mass index was categorized as normal (18.5–22.9 kg/m2), overweight (23–27.4 kg/m2), or obese (≥27.5 kg/m2) on the basis of cutoff points for Asian populations. Fecundability was measured by time to pregnancy in menstrual cycles within a year of enrolment. Discrete-time proportional hazards models were used to estimate fecundability odds ratios, with adjustment for confounders and accounting for left truncation and right censoring. Results: Of 232 overweight women, 28 (12.1%) and 25 (10.8%) were metabolically unhealthy by metabolic syndrome ≥3 criteria and homeostasis model assessment-insulin resistance ≥2.5, respectively. Of 175 obese women, 54 (30.9%) and 93 (53.1%) were metabolically unhealthy by metabolic syndrome ≥3 criteria and homeostasis model assessment-insulin resistance ≥2.5, respectively. Compared with metabolically healthy normal-weight women, lower fecundability was observed in metabolically unhealthy overweight women on the basis of metabolic syndrome criteria (fecundability odds ratios, 0.38 [95% confidence interval, 0.15–0.92]) and homeostasis model assessment-insulin resistance (fecundability odds ratios, 0.68 [95% confidence interval, 0.33–1.39]), with metabolic syndrome criteria showing a stronger association. Metabolically unhealthy obese women showed lower fecundability than the healthy normal-weight reference group by both metabolic syndrome (fecundability odds ratios, 0.35; 95% confidence interval, 0.17–0.72) and homeostasis model assessment-insulin resistance criteria (fecundability odds ratios, 0.43; 95% confidence interval, 0.26–0.71). Reduced fecundability was not observed in overweight or obese women who showed healthy metabolic profiles by either definition. Conclusion: Overweight or obesity was not synonymous with having metabolic syndrome or insulin resistance. In our preconception cohort, metabolically unhealthy overweight and obese women showed reduced fecundability, unlike their counterparts who were metabolically healthy. These findings suggest that metabolic health status, rather than simply being overweight and obese per se, plays an important role in fecundability.acceptedVersionPeer reviewe

    The contribution of macroalgae-associated fishes to small-scale tropical reef fisheries

    Get PDF
    Macroalgae-dominated reefs are a prominent habitat in tropical seascapes that support a diversity of fishes, including fishery target species. To what extent, then, do macroalgal habitats contribute to small-scale tropical reef fisheries? To address this question we: (1) Quantified the macroalgae-associated fish component in catches from 133 small-scale fisheries, (2) Compared life-history traits relevant to fishing (e.g. growth, longevity) in macroalgal and coral-associated fishes, (3) Examined how macroalgae-associated species can influence catch diversity, trophic level and vulnerability and (4) Explored how tropical fisheries change with the expansion of macroalgal habitats using a case study of fishery-independent data for Seychelles. Fish that utilised macroalgal habitats comprise 24% of the catch, but very few fished species relied entirely on macroalgal or coral habitats post-settlement. Macroalgal and coral-associated fishes had similar life-history traits, although vulnerability to fishing declined with increasing contribution of macroalgae association to the catch, whilst mean trophic level and diversity peaked when macroalgal-associated fish accounted for 20%-30% of catches. The Seychelles case study revealed similar total fish biomass on macroalgal and coral reefs, although the biomass of primary target species increased as macroalgae cover expanded. Our findings reinforce that multiple habitat types are needed to support tropical fishery stability and sustainability. Whilst coral habitats have been the focus of tropical fisheries management, we show the potential for macroalgae-associated fish to support catch size and diversity in ways that reduce vulnerability to overfishing. This is pertinent to seascapes where repeated disturbances are facilitating the replacement of coral reef with macroalgal habitats

    Association between perinatal methylation of the neuronal differentiation regulator HES1 and later childhood neurocognitive function and behaviour

    Get PDF
    Background: Early life environments induce long-term changes in neurocognitive development and behaviour. In animal models, early environmental cues affect neuropsychological phenotypes via epigenetic processes but as yet there is little direct evidence for such mechanisms in humans. Method: We examined the relation between DNA methylation at birth and child neuropsychological outcomes in two culturally diverse populations using a genome-wide methylation analysis and validation by pyrosequencing. Results: Within the UK Southampton Women’s Survey (SWS) we first which identified 41 differentially methylated regions of interest (DMROI) at birth associated with child’s full-scale IQ at age 4-years. Associations between HES1 DMROI methylation and later cognitive function were confirmed by pyrosequencing in 175 SWS children. Consistent with these findings, higher HES1 methylation was associated with higher executive memory function in a second independent group of 200 SWS seven-year olds. Finally, we examined a pathway for this relationship within a Singaporean cohort (n=108). Here, HES1 DMROI methylation predicted differences in early infant behavior, known to be associated with academic success. In vitro, methylation of HES1 inhibited ETS transcription factor binding, suggesting a functional role of this site. Conclusions: Thus, our findings suggest that perinatal epigenetic processes mark later neuro-cognitive function and behavior, providing support for a role of epigenetic processes in mediating the long-term consequences of early life environment on cognitive development. <br/

    Retrospective evaluation of whole exome and genome mutation calls in 746 cancer samples

    No full text
    Funder: NCI U24CA211006Abstract: The Cancer Genome Atlas (TCGA) and International Cancer Genome Consortium (ICGC) curated consensus somatic mutation calls using whole exome sequencing (WES) and whole genome sequencing (WGS), respectively. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium, which aggregated whole genome sequencing data from 2,658 cancers across 38 tumour types, we compare WES and WGS side-by-side from 746 TCGA samples, finding that ~80% of mutations overlap in covered exonic regions. We estimate that low variant allele fraction (VAF < 15%) and clonal heterogeneity contribute up to 68% of private WGS mutations and 71% of private WES mutations. We observe that ~30% of private WGS mutations trace to mutations identified by a single variant caller in WES consensus efforts. WGS captures both ~50% more variation in exonic regions and un-observed mutations in loci with variable GC-content. Together, our analysis highlights technological divergences between two reproducible somatic variant detection efforts

    The influence of coral reef benthic condition on associated fish assemblages

    Get PDF
    Accumulative disturbances can erode a coral reef's resilience, often leading to replacement of scleractinian corals by macroalgae or other non-coral organisms. These degraded reef systems have been mostly described based on changes in the composition of the reef benthos, and there is little understanding of how such changes are influenced by, and in turn influence, other components of the reef ecosystem. This study investigated the spatial variation in benthic communities on fringing reefs around the inner Seychelles islands. Specifically, relationships between benthic composition and the underlying substrata, as well as the associated fish assemblages were assessed. High variability in benthic composition was found among reefs, with a gradient from high coral cover (up to 58%) and high structural complexity to high macroalgae cover (up to 95%) and low structural complexity at the extremes. This gradient was associated with declining species richness of fishes, reduced diversity of fish functional groups, and lower abundance of corallivorous fishes. There were no reciprocal increases in herbivorous fish abundances, and relationships with other fish functional groups and total fish abundance were weak. Reefs grouping at the extremes of complex coral habitats or low-complexity macroalgal habitats displayed markedly different fish communities, with only two species of benthic invertebrate feeding fishes in greater abundance in the macroalgal habitat. These results have negative implications for the continuation of many coral reef ecosystem processes and services if more reefs shift to extreme degraded conditions dominated by macroalgae

    Uncovering drivers of juvenile coral density following mass bleaching

    Get PDF
    Thermally induced mass coral bleaching is globally responsible for major losses of coral cover. Coral recovery from mass coral disturbances like the 2016 bleaching event hinges on successful recruitment of new coral colonies to the existing population. Juvenile corals as a life history stage represent survival and growth of new recruits. As such, habitat preferences of juvenile corals and how environmental parameters interact to drive coral recovery following a mass bleaching disturbance are important research areas. To expand our knowledge on this topic, we compared juvenile coral densities from before the 2016 bleaching event with those after the disturbance and identified abiotic and biotic characteristics of 21 reefs in the inner Seychelles that predict juvenile coral densities. Our results show that following the 2016 bleaching event, juvenile coral densities were significantly reduced by about 70%, with a particularly large decline in juvenile Acropora. Macroalgae present a large obstacle to survival of juvenile corals in a post-bleaching setting, but their influence varies as a function of herbivore biomass, reef structure, and reef type. Higher biomass of herbivorous fish weakens the negative effect of macroalgae on juvenile corals, and structural complexity on granitic reefs is a strong positive predictor of juvenile coral density. However, structural complexity on carbonate or patch reefs was negatively related to juvenile coral density, highlighting the importance of considering interactive terms in analyses. Our study emphasises the importance of habitat for juvenile coral abundance at both fine and seascape scales, adding to the literature on drivers of reef rebound potential following severe coral bleaching
    corecore