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Abstract: The increasing prevalence of gestational diabetes mellitus (GDM) is contributing to the
rising global burden of type 2 diabetes (T2D) and intergenerational cycle of chronic metabolic
disorders. Primary lifestyle interventions to manage GDM, including second trimester dietary and
exercise guidance, have met with limited success due to late implementation, poor adherence and
generic guidelines. In this study, we aimed to build a preconception-based GDM predictor to enable
early intervention. We also assessed the associations of top predictors with GDM and adverse
birth outcomes. Our evolutionary algorithm-based automated machine learning (AutoML) model
was implemented with data from 222 Asian multi-ethnic women in a preconception cohort study,
Singapore Preconception Study of Long-Term Maternal and Child Outcomes (S-PRESTO). A stacked
ensemble model with a gradient boosting classifier and linear support vector machine classifier
(stochastic gradient descent training) was derived using genetic programming, achieving an excellent
AUC of 0.93 based on four features (glycated hemoglobin A1c (HbA1c), mean arterial blood pressure,
fasting insulin, triglycerides/HDL ratio). The results of multivariate logistic regression model showed
that each 1 mmol/mol increase in preconception HbA1c was positively associated with increased
risks of GDM (p = 0.001, odds ratio (95% CI) 1.34 (1.13–1.60)) and preterm birth (p = 0.011, odds ratio
1.63 (1.12–2.38)). Optimal control of preconception HbA1c may aid in preventing GDM and reducing
the incidence of preterm birth. Our trained predictor has been deployed as a web application that
can be easily employed in GDM intervention programs, prior to conception.
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1. Introduction

The prevalence of gestational diabetes mellitus (GDM) is increasing globally, affecting
one in five pregnancies in some populations [1]. GDM is a condition in which a woman
without previous diabetes develops glucose intolerance during pregnancy [2]. This con-
dition increases the risk of developing GDM-related complications such as hypertensive
disorders of pregnancy, fetal macrosomia, caesarean section, shoulder dystocia and birth
injuries [3]. Poorly controlled GDM also increases risks of premature birth, perinatal
mortality and neonatal morbidity. GDM has long-term implications as women with a
history of GDM have a 10-fold higher risk of developing type 2 diabetes (T2D) as well
as higher risk of developing cardiovascular adversities compared to those with a normo-
glycemic pregnancy [4,5]. Offspring of mothers with GDM are also at an increased risk of
having cardiometabolic adversities, resulting in a transgenerational cycle of diabetes and
cardiovascular diseases [6].

Healthcare systems across the world use either the high risk selective screening ap-
proach or universal screening of GDM in pregnant women. The American Diabetes Associ-
ation (ADA) endorses the use of either a one-step approach (IADPSG diagnostic criteria,
fasting two-hour, three-point 75 g oral glucose tolerance test (OGTT)) or an older two-step
approach (non-fasting one-hour 50 g glucose challenge test (GCT), followed by diagnostic
fasting three-hour 100 g OGTT on a subset of women exceeding the glucose threshold
value of GCT) at 24–28 weeks’ gestation [7]. The UK NICE recommends high risk selective
screening for women with known GDM risk factors, such as obesity (body mass index (BMI)
≥30 kg/m2), family history of diabetes, history of GDM, previous delivery of a macrosomic
baby (≥4.5 kg) and being in an ethnic group with a high prevalence of diabetes (South
Asian, Black Caribbean or Middle Eastern) [8]. In the latest UK NICE 2015 guidelines,
women with a history of GDM are offered an OGTT at their booking appointment [8].
Women with other risk factors are offered an OGTT at 24–28 weeks’ gestation. The Interna-
tional Diabetes Federation (IDF) GDM Model of Care [9] recommends that all pregnant
women are screened at first visit by a fasting glucose, HbA1c or random glucose sample to
rule out pre-existing diabetes. In those with normal early screening, an OGTT is performed
at 24–28 weeks’ and 32 weeks’ gestation (for high risk women) to assess the risk of GDM.

Pre-existing abnormalities in maternal metabolism are important factors in the patho-
physiology of metabolic diseases and fetal programming. GDM intervention typically
focuses on counseling, dietary modification and increasing physical activity. The daily
self-monitoring of blood glucose is aimed at normalizing blood glucose levels and reducing
the complications of GDM. Primary lifestyle interventions to manage GDM, such as diet
and exercise in the second trimester, provide limited benefits for the mother and child
due to late implementation, poor adherence and generic guidelines [10]. Preconception
presents an important opportunity to break the intergenerational cycle of chronic metabolic
disorders. The Lancet series on preconception maternal health in 2018 highlighted precon-
ception as a critical period for shaping pregnancy outcomes and subsequent maternal and
child health [11–13].

In recent years, some machine learning models have been developed for population
based GDM risk stratification. However, the current state-of-the-art models are only
applicable during pregnancy, which can be too late for effective intervention. Artzi et al.
trained a LightGBM gradient boosting classifier with Israel’s Electronic Health Records
(EHR) data for onset of GDM (area under the receiver operating characteristic curve (AUC)
of 0.80 was achieved with nine questionnaire features) [14]. In another study, Wu et al.
trained a logistic regression classifier with China’s EHR data for early GDM prediction
(AUC of 0.77 was achieved with seven clinical features) [15]. To date, there have been no
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studies applying machine learning for GDM risk assessment in a preconception population.
We therefore would like to suggest a paradigm shift in GDM management strategy.

In this study, we developed a machine learning model for early prediction of GDM
during preconception among women in Singapore. Taking a longitudinal approach, we
also assessed the associations of the strongest predictors with GDM and adverse birth
outcomes (preterm birth, low birthweight at term and large for gestational age infant).
Our machine learning models were implemented using data from the prospective Sin-
gapore Preconception Study of Long-Term Maternal and Child Outcomes (S-PRESTO)
cohort study.

2. Materials and Methods
2.1. Study Design

S-PRESTO (ClinicalTrials.gov NCT03531658) is a prospective, preconception cohort
study of multi-ethnic groups (Chinese, Malay, Indian or any combination of these three
ethnicities) [16]. Women planning for pregnancies were recruited from the KK Women’s
and Children’s Hospital (KKH) and community between February 2015 and October
2017. There were 1032 unique participants for preconception; 475 conceived singleton
pregnancies within a year of enrollment into the study, and 373 remained in the study
and had a livebirth. The mother–child dyads have been followed for seven years, with
longitudinal phenotypic data collected across multiple health domains.

Maternal glucose tolerance status was assessed longitudinally using 75 g 2 h oral
glucose tolerance test (OGTT) preconception, mid-gestation (median 28.1 weeks, interquar-
tile range 27.3–28.7 weeks) and 3 months postpartum, alongside glycated hemoglobin
A1c (HbA1c) at the same timepoints. The International Association of Diabetes and
Pregnancy Study (IADPSG)/World Health Organization (WHO) 2013 criteria (fasting
plasma glucose ≥ 5.1–6.9 mmol/L, 1 h plasma glucose ≥ 10.0 mmol/L and 2 h plasma
glucose ≥ 8.5–11.0 mmol/L) were used to diagnose GDM [17]. The WHO 2006 criteria
(fasting plasma glucose ≥ 7.0 mmol/L or 2 h plasma glucose ≥ 11.1 mmol/L) were used
to diagnose impaired fasting glucose (IFG), impaired glucose tolerance (IGT) and type
2 diabetes (T2D) [18]. An HbA1c of ≥6.5% was used as the cut-off point for diagnosing
diabetes based on WHO recommendations [19].

Participants diagnosed with T2D based on preconception and 3 months postpartum
OGTT or HbA1c readings were excluded from model training. GDM analysis was restricted
to mothers whose gestation at the time of antenatal OGTT was 24+1–28+6 weeks (gestational
age is given as weeks+days). Participants of mixed ethnicity or unclassifiable GDM status
due to missing glucose readings were removed from the final analysis set.

Our models were built using 222 preconception women who had complete data
on demographics, medical/obstetric history, physical measures, blood-derived markers,
lifestyle factors and antenatal OGTT (Figure 1). The prevalence of GDM was 13.1% in our
training dataset. Participant characteristics are presented in Table 1.

Table 1. Participant characteristics at preconception baseline. Participant characteristics table on
demographics, medical/obstetric history, physical measures, blood-derived markers, lifestyle factors,
metabolic indices, prediabetes status, antenatal OGTT and adverse birth outcomes. Continuous
variables are presented as group mean value and standard deviation. Categorical variables are
presented as count and percentage.

S-PRESTO
(n = 222)

Demographics
Age (years), mean ± SD 30.51 ± 3.11
Ethnicity, n (%)

Chinese 176 (79.28)
Malay 30 (13.51)
Indian 16 (7.21)

ClinicalTrials.gov
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Table 1. Cont.

S-PRESTO
(n = 222)

Medical/Obstetric History
Family history of diabetes mellitus, n (%)

Yes 63 (28.38)
No 159 (71.62)

History of GDM, n (%)
Yes 6 (2.70)
No 216 (97.30)

Parity, n (%)
Nulliparous 140 (63.06)
Multiparous 82 (36.94)

Medical history of high blood pressure, n (%)
Yes 0 (0.00)
No 222 (100.00)

Physical Measures at Preconception
Pre-pregnancy weight (kg), mean ± SD 59.31 ± 11.80
Maternal height (cm), mean ± SD 159.96 ± 5.55
Pre-pregnancy BMI (kg/m2), mean ± SD 23.18 ± 4.52
Waist circumference (cm), mean ± SD 81.35 ± 10.10
Mid-upper arm circumference (cm), mean ± SD 27.27 ± 4.08
Systolic blood pressure (mm Hg), mean ± SD 104.15 ± 8.92
Diastolic blood pressure (mm Hg), mean ± SD 67.38 ± 7.51
Mean arterial blood pressure (mm Hg), mean ± SD 79.63 ± 7.48

Blood-Derived Markers at Preconception
HbA1c (mmol/mol), mean ± SD 31.80 ± 2.73
Fasting glucose (mmol/L), mean ± SD 4.72 ± 0.33
Fasting insulin (mU/L), mean ± SD 5.97 ± 4.83
Triglycerides (mmol/L), mean ± SD 0.81 ± 0.38
High density lipoprotein cholesterol (mmol/L), mean ± SD 1.48 ± 0.28
Gamma-glutamyl transferase (U/L), mean ± SD 18.99 ± 14.28

Lifestyle Factors at Preconception
Self-reported smoking, n (%)

Yes 6 (2.70)
No 216 (97.30)

Self-reported alcohol consumption, n (%)
Yes 159 (71.62)
No 63 (28.38)

Metabolic Indices at Preconception
Homeostasis model assessment-insulin resistance (HOMA-IR) index,
mean ± SD 1.27 ± 1.08

Triglycerides/high density lipoprotein cholesterol ratio 0.59 ± 0.41
Fatty liver index, mean ± SD 5.61 ± 10.38
Metabolic syndrome, n (%)

Yes 7 (3.15)
No 215 (96.85)

Prediabetes Status at Preconception
Impaired fasting glucose (IFG), n (%) 0 (0.00)
Impaired glucose tolerance (IGT), n (%) 11 (5.00)
Type 2 diabetes (T2D), n (%) 0 (0.00)
Normal glucose metabolism, n (%) 209 (95.00)



Int. J. Environ. Res. Public Health 2022, 19, 6792 5 of 17

Table 1. Cont.

S-PRESTO
(n = 222)

OGTT at 24+1–28+6 Weeks’ Gestation
Glucose measures (mmol/L), mean ± SD

Fasting glucose 4.28 ± 0.35
1-hour glucose 7.99 ± 1.52
2-hour glucose 6.68 ± 1.27

GDM, n (%)
IADPSG/WHO 2013 criteria 29 (13.06)

Adverse Birth Outcomes
Preterm birth, n (%)

Yes 10 (4.50)
No 212 (95.50)

Low birthweight at term, n (%)
Yes 7 (3.24)
No 209 (96.76)

Large for gestational age infant, n (%)
Yes 34 (15.74)
No 182 (84.26)
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Figure 1. Sample Participant characteristics. Sample selection flowchart of 222 preconception women
who had complete data on demographics, medical/obstetric history, physical measures, blood-
derived markers, lifestyle factors and antenatal OGTT for machine learning models.

Information on demographics (age, ethnicity) and medical/obstetric history (family
history of diabetes mellitus, history of GDM, parity and medical history of high blood
pressure) were derived from preconception questionnaires. Lifestyle factors on self-reported
smoking and alcohol consumption were also collected at preconception.

The physical measures at preconception were included for feature selection modeling.
Weight was measured to the nearest 0.1 kg (SECA 803) and height to the nearest 0.1 cm
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(SECA 213). BMI was derived using weight divided by height squared (kg/m2). Waist
circumference was measured to the nearest 0.1 cm (SECA 203). Additionally, mid-upper
arm circumference was measured to the nearest 0.1 cm, midway between acromion process
and olecranon process (SECA 212). Systolic and diastolic blood pressure were measured
using the Microlife BP 3AS1-2 blood pressure device. Mean arterial blood pressure was
further derived by doubling the diastolic blood pressure and adding to the systolic blood
pressure, with the composite sum divided by 3.

Sodium fluoride/potassium oxalate tubes were used to collect blood samples for
plasma glucose measurement. Potassium EDTA tubes were used to collect whole blood
samples for HbA1c measurement. All samples were kept at 4 ◦C, immediately sent to the
hospital laboratory, centrifuged within 30 min and analyzed within 1 h from the time of
earliest blood draw. Fasting plasma glucose, 30 min plasma glucose, 1 h plasma glucose
(antenatal OGTT only), 90 min plasma glucose (antenatal OGTT only), 2 h plasma glucose
and HbA1c concentrations were measured using the ARCHITECT c8000 Clinical Chemistry
Analyzer (Abbott Laboratories), which is a National Glycohemoglobin Standardisation
Program (NGSP) certified method for HbA1c testing. The preconception HbA1c marker
was included for feature selection modeling.

Longitudinally obtained plasma samples were analyzed for fasting insulin, triglyc-
erides (TGs), high density lipoprotein (HDL) cholesterol and gamma-glutamyl transferase
at the National University Hospital (NUH) clinical laboratory (accredited by the College
of American Pathologists [20]). Maternal venous blood was collected into silicone coated
tubes, and serum was obtained by centrifugation at 1600× g for 10 min at 4 ◦C. The serum
was stored at −80 ◦C until sample batch analysis. Insulin was measured using the Sandwich
immunoassay (Beckman DxI 800 analyzer, manufactured by Beckman Coulter in Fullerton,
CA, USA). Using a Beckman AU5800 analyzer, TG and gamma-glutamyl transferase were
measured by colorimetric assays and HDL cholesterol using an enzymatic assay. These
blood markers were subsequently used for the derivation of metabolic indices and machine
learning modeling.

The homeostasis model assessment of insulin resistance (HOMA-IR) index was calcu-
lated based on the formula [21]:

HOMA − IR =
f asting glucose in mmol

L × f asting insulin in mU
L

22.5

In addition, the TG/HDL cholesterol ratio was calculated based on the fasting lipid
concentrations to assess insulin resistance [22].

Fatty liver index as a surrogate marker of non-alcoholic fatty liver disease (NAFLD)
was calculated with 4 variables (triglycerides (TGs), BMI, gamma-glutamyl transferase
(GGT) and waist circumference (WC)) [23]:

FLI =
(e0.953×loge(TG)+0.139×BMI+0.718×loge(GGT)+0.053×WC−15.745)(

1 + e0.953×loge(TG)+0.139×BMI+0.718×loge(GGT)+0.053×WC−15.745
) × 100

Metabolic syndrome status was defined when three or more of the following cri-
teria were fulfilled: waist circumference > 80 cm, triglycerides ≥ 1.7 mmol/L, HDL
cholesterol ≤ 1.3 mmol/L, blood pressure ≥ 130/85 mm Hg, fasting plasma
glucose ≥ 6.1 mmol/L [24].

Age, ethnicity, family history of diabetes mellitus, history of GDM, parity, height,
BMI, mid-upper arm circumference, mean arterial blood pressure, HbA1c, fasting insulin,
self-reported smoking, self-reported alcohol consumption, TG/HDL ratio, fatty liver index
and metabolic syndrome variables were included for feature selection modeling.

2.2. Machine Learning Methodology and Statistical Analyses

Our methodological novelty lies in combining coalitional game theory concepts with
evolutionary algorithm-based automated machine learning (AutoML). Automating the
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process of machine learning enables the best possible model to be built for our supervised
machine learning problem. The optimal machine learning pipelines were automatically
generated using genetic programming (GP), a type of evolutionary algorithm [25,26]. An
introduction to GP is provided in the Supplementary Materials. In brief, GP solves machine
learning tasks based on random mutation, crossover, fitness functions and generations to
arrive at optimal solutions (models and hyperparameters).

The Shapley additive explanations (SHAP) framework [27] was combined with the
evolutionary algorithm-based Tree-Based Pipeline Optimization Tool (TPOT) [28] to dis-
cover novel features and select optimal supervised machine learning models. We explored
the interaction effects of multiple predictors using the SHAP framework methodology. In
game theory, the Shapley value is the average expected marginal contribution of one player
across all possible permutations of players (average effects of team member composition
and team size). The Shapley value helps to determine a payoff for all the game players
when each player might have contributed more or less than the others when working in
coalition. In machine learning, game players are the features, and collective payout is the
model prediction. The SHAP framework provides local explanations based on exact Shap-
ley values to understand the global model structure. For every possible feature ordering,
features are introduced one at a time into a conditional expectation function of the model’s
output, and changes in expectation are attributed to the introduced feature, averaged over
all possible feature orderings in a fair manner. SHAP values represent a change in log
odds ratio. Lundberg and Lee have proposed SHAP as the only additive feature attri-
bution method that satisfies two important properties of game theory—additivity (local
accuracy) and monotonicity (consistency) [27]. The integrated game theoretical approach
with automated machine learning further advances biomedical data science for data-driven
precision care.

The AutoML models were built using Anaconda’s distribution of Python v3.7.9 pro-
gramming language in a JupyterLab computational environment. Community-developed
Python packages were used for modular programming: Pandas v0.25.3, Numpy v1.19.2,
Matplotlib v3.3.2, Scikit-learn v0.23.2, TPOT v0.11.7 and Shap v0.37.0. We trained the Au-
toML models on a Linux server with an Intel Xeon Gold 6138 CPU processor. In the TPOT
classifier, the search for optimal machine learning pipelines was run over 100 generations
with 100 individuals retained in the genetic programming population of every generation.
We used 5-fold stratified cross validation to preserve the same proportion of GDM cases
in each fold, and model performances were evaluated using the area under the receiver
operating characteristic curve (AUC).

The AutoML feature selection model based on preconception feature variables was
trained with GDM as the outcome; top predictors with SHAP value magnitudes greater than
zero were included in the GDM prediction models. Sensitivity analyses were performed
to explore the prediction effects of fasting glucose, systolic blood pressure and HOMA-
IR index in the proposed AutoML model. We also assessed the associations between
the strongest predictors and GDM outcome/adverse birth outcomes (preterm birth, low
birthweight at term and large for gestational age infants). Preterm birth was defined
as livebirth before 37 weeks of pregnancy [29]. Low birthweight at term was defined as
birthweight less than 2500 g in term births (37–42 weeks of pregnancy) [29]. The sex-specific
birthweight for gestational age percentile was derived by making reference to Growing Up
in Singapore Towards Healthy Outcomes (GUSTO) healthy newborn weight percentile [30],
which was based on the generic reference for birthweight percentiles created by Mikolajczyk
et al. [31]. Large for gestational age infants have a birthweight of more than 90th percentile.
Additional sensitivity analyses were performed by excluding preconception women with
prediabetes (IFG and IGT). All association analyses were performed using Stata/MP 17.0
software (StataCorp LP, College Station, TX, USA).
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3. Results
3.1. Top Predictors from AutoML Feature Selection Model

Figure 2 presents the SHAP global importance plot of the AutoML feature selection
model. A stacked ensemble model with a random forest classifier and linear support vector
machine classifier (stochastic gradient descent training) was the best machine learning
pipeline evaluated by TPOT (AUC: 0.89). The top preconception feature variables impacting
the model outputs were HbA1c, fatty liver index, mean arterial blood pressure, fasting
insulin, TG/HDL ratio, height, age, mid-upper arm circumference, BMI, parity, alcohol
consumption, family history of diabetes mellitus and Chinese ethnicity.
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tion with GDM/non-GDM outcomes estimated using the Shapley values computed from coalitional
game theory. SHAP values represent a change in log odds ratio. SHAP values of zero means that the
feature does not contribute to the prediction.

Pre-pregnancy BMI demonstrated small predictive effects relative to preconception
HbA1c. Chinese women also had a higher risk of GDM when compared with Indian and
Malay women. The latter observation could be attributed to the high proportion of Chinese
ethnic participants in the analysis set (79.3%). A history of GDM was a redundant feature
in the AutoML feature selection model possibly due to the low frequency of participants
with a history of documented GDM (2.7%). Metabolic syndrome status preconception did
not contribute to GDM prediction.

3.2. Preconception Predictive Risk Model

The preconception predictive risk model for GDM was sequentially constructed using
top predictors with SHAP value magnitudes greater than zero (Table 2). Preconception
HbA1c alone was able to predict GDM outcome with high discrimination (AUC: 0.81). A
model with nine features obtainable non-invasively (mean arterial blood pressure, height,
age, mid-upper arm circumference, BMI, parity, alcohol consumption, family history of
diabetes, Chinese ethnicity) was also able to predict GDM outcome with good performance
(AUC: 0.81). The optimal machine learning pipeline comprises five features (HbA1c, fatty
liver index, mean arterial blood pressure, fasting insulin, TG/HDL ratio). The extra trees
classifier was the best machine learning pipeline evaluated by TPOT (AUC: 0.93). In the
sensitivity analysis (see Supplementary Table S1), we observed that model performance
was still maintained by dropping the fatty liver index as a feature variable. Based on the
remaining four features, a stacked ensemble model with a gradient boosting classifier
and linear support vector machine classifier (stochastic gradient descent training) was the
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best machine learning pipeline evaluated by TPOT (AUC: 0.93). The four-feature model
comprising HbA1c, mean arterial blood pressure, fasting insulin and TG/HDL ratio is
our proposed solution for a preconception-based GDM predictor. The exported AutoML
pipeline for the best predictive model is provided in the Supplementary Materials.

Table 2. Construction of preconception predictive risk model. The preconception predictive risk
model for GDM was sequentially constructed using top predictors with SHAP value magnitudes
greater than zero in the AutoML feature selection model. The optimal machine learning pipeline for
each model and area under the receiver operating characteristic curve (AUC) performance metric
are reported. The proposed AutoML model was also robust when replacing HbA1c with fasting
glucose (AUC: 0.87), replacing mean arterial blood pressure with systolic blood pressure (AUC: 0.91)
and replacing fasting insulin with HOMA-IR index (AUC: 0.91) (Supplementary Table S1). HbA1c

had the greatest impact on model performance changes (∆AUC = −0.06), followed by mean arterial
blood pressure (∆AUC = −0.02) and fasting insulin (∆AUC = −0.02). Given these observations,
maternal insulin resistance around conception can be postulated as an important determinant in the
pathophysiology of metabolic diseases and fetal programming.

Features Optimal Machine Learning Pipeline AUC

1: HbA1c Gradient boosting classifier. 0.81

2: HbA1c + fatty liver index
Stacked ensemble model with logistic regression
classifier, multinomial naïve Bayes classifier and
multi-layer perceptron classifier.

0.78

3: HbA1c + fatty liver index + mean arterial
blood pressure

Stacked ensemble model with k-nearest neighbors
classifier and decision tree classifier. 0.82

4: HbA1c + fatty liver index + mean arterial
blood pressure + fasting insulin

Stacked ensemble model with k-nearest neighbors
classifier and decision tree classifier. 0.88

5: HbA1c + fatty liver index + mean arterial
blood pressure + fasting insulin + TG/HDL
ratio

Extra trees classifier. 0.93

6: HbA1c + fatty liver index + mean arterial
blood pressure + fasting insulin + TG/HDL
ratio + height

Stacked ensemble model with logistic regression
classifier (stochastic gradient descent training) and
k-nearest neighbors classifier.

0.89

7: HbA1c + fatty liver index + mean arterial
blood pressure + fasting insulin + TG/HDL
ratio + height + age

Multi-layer perceptron classifier. 0.88

8: HbA1c + fatty liver index + mean arterial
blood pressure + fasting insulin + TG/HDL
ratio + height + age + mid-upper arm
circumference

Stacked ensemble model with Bernoulli naïve Bayes
classifier, gaussian naïve Bayes classifier, multinomial
naïve Bayes classifier and linear support vector
machine classifier.

0.93

9: HbA1c + fatty liver index + mean arterial
blood pressure + fasting insulin + TG/HDL
ratio + height + age + mid-upper arm
circumference + BMI

Stacked ensemble model with extra trees classifier,
Bernoulli naïve Bayes classifier and gaussian naïve
Bayes classifier.

0.85

10: HbA1c + fatty liver index + mean arterial
blood pressure + fasting insulin + TG/HDL
ratio + height + age + mid-upper arm
circumference + BMI + parity

Stacked ensemble model with k-nearest neighbors
classifier and multi-layer perceptron classifier. 0.85

11: HbA1c + fatty liver index + mean arterial
blood pressure + fasting insulin + TG/HDL
ratio + height + age + mid-upper arm
circumference + BMI + parity + alcohol
consumption

Stacked ensemble model with gradient boosting
classifier, multi-layer perceptron classifier and linear
support vector machine classifier.

0.90

12: HbA1c + fatty liver index + mean arterial
blood pressure + fasting insulin + TG/HDL
ratio + height + age + mid-upper arm
circumference + BMI + parity + alcohol
consumption + family history of diabetes
mellitus

Stacked ensemble model with multinomial naïve
Bayes classifier and multi-layer perceptron classifier. 0.87

13: HbA1c + fatty liver index + mean arterial
blood pressure + fasting insulin + TG/HDL
ratio + height + age + mid-upper arm
circumference + BMI + parity + alcohol
consumption + family history of diabetes
mellitus + Chinese ethnicity

Stacked ensemble model with multinomial naïve
Bayes classifier and multi-layer perceptron classifier. 0.87
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Table 2. Cont.

Features Optimal Machine Learning Pipeline AUC

14: Mean arterial blood pressure + height +
age + mid-upper arm circumference + BMI +
parity + alcohol consumption + family
history of diabetes mellitus + Chinese
ethnicity

Stacked ensemble model with linear support vector
machine classifier (stochastic gradient descent
training), Bernoulli naïve Bayes classifier, multinomial
naïve Bayes classifier, multi-layer perceptron classifier
and linear support vector machine classifier.

0.81

3.3. Associations of Top Predictors and GDM Outcome

Table 3 presents the associations of the strongest predictors identified from the AutoML
feature selection model for GDM. Each 1 mmol/mol increase in preconception HbA1c was
positively associated with GDM, independent of maternal ethnicity, age, parity, family
history of diabetes mellitus and pre-pregnancy BMI (p = 0.001, OR (95% CI) 1.34 (1.13–1.60)).

Table 3. Associations of top predictors and GDM outcome. Associations of top predictors identified
from AutoML feature selection model and GDM outcome. Statistical tests were conducted two-
sided with a significance level of 5%. All confidence intervals (CIs) are presented two-sided with a
confidence level of 95%. The odds ratios (ORs) with 95% CI are presented. A resultant p-value of less
than 0.05 is considered statistically significant.

Feature

GDM (n = 222)

OR (95% CI)
p-Value

HbA1c (mmol/mol) OR: 1.31 (1.12–1.53)
p-value = 0.001 *

Fatty liver index OR: 1.01 (0.98–1.05)
p-value = 0.458

Mean arterial blood pressure (mm Hg) OR: 0.99 (0.94–1.04)
p-value = 0.584

Fasting insulin (mU/L) OR: 1.05 (0.99–1.12)
p-value = 0.119

Triglycerides/high density lipoprotein cholesterol ratio OR: 1.45 (0.65–3.28)
p-value = 0.365

Maternal height (cm) OR: 0.96 (0.90–1.04)
p-value = 0.311

Age (years) OR: 0.97 (0.86–1.10)
p-value = 0.673

Mid-upper arm circumference (cm) OR: 1.05 (0.96–1.15)
p-value = 0.290

BMI (kg/m2) OR: 1.05 (0.97–1.13)
p-value = 0.241

Parity OR: 0.74 (0.32–1.71)
p-value = 0.481

Self-reported alcohol consumption OR: 2.06 (0.75–5.67)
p-value = 0.161

Family history of diabetes mellitus OR: 1.39 (0.61–3.18)
p-value = 0.436

Chinese vs. Malay/Indian ethnicity OR: 1.29 (0.47–3.60)
p-value = 0.621

Feature

GDM (n = 222)

OR (95% CI)
p-value

HbA1c (mmol/mol) ˆ OR: 1.34 (1.13–1.60)
p-value = 0.001 *

Feature

GDM (n = 211)

OR (95% CI)
p-value

HbA1c (mmol/mol) #,ˆ OR: 1.32 (1.10–1.59)
p-value = 0.003 *

* Statistically significant feature. ˆ Adjusted for maternal ethnicity, age, parity, family history of diabetes mellitus
and pre-pregnancy BMI. # After excluding 11 women with prediabetes (impaired glucose tolerance) based on
preconception OGTT.
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3.4. Associations of Top Predictors and Adverse Birth Outcomes (Preterm Birth, Low Birthweight
at Term and Large for Gestational Age Infant)

Similarly, Table 4 presents the associations of top GDM predictors with adverse birth
outcomes (preterm birth, low birthweight at term and large for gestational age infant).
Each 1 mmol/mol increase in preconception HbA1c was positively associated with preterm
birth outcome, independent of maternal ethnicity, age, parity, family history of diabetes
mellitus, pre-pregnancy BMI, GDM diagnosis, total gestational weight gain and child sex
(p = 0.011, OR: 1.63 (1.12–2.38)). However, preconception HbA1c was not associated with
low birthweight at term (OR: 1.13 (0.86–1.49)) or large for gestational age infant (OR: 1.06
(0.92–1.21)). We additionally found that pre-pregnancy BMI was positively associated with
large for gestational age infant (p < 0.001, OR: 1.20 (1.10–1.31)).

Table 4. Associations of top predictors and adverse birth outcomes (preterm birth, low birthweight
at term and large for gestational age infant). Associations of top predictors identified from AutoML
feature selection model and adverse birth outcomes (preterm birth, low birthweight at term and
large for gestational age infant). Statistical tests were conducted two-sided with a significance level
of 5%. All confidence intervals (CIs) are presented two-sided with a confidence level of 95%. The
odds ratios (ORs) with 95% CI are presented. A resultant p-value of less than 0.05 is considered
statistically significant.

Feature

Preterm Birth
(n = 222)

Low Birthweight at Term
(n = 216)

Large for Gestational Age
Infant

(n = 216)

OR (95% CI)
p-Value

OR (95% CI)
p-Value

OR (95% CI)
p-Value

HbA1c (mmol/mol) OR: 1.28 (1.01–1.62)
p-value = 0.042 *

OR: 1.13 (0.86–1.49)
p-value = 0.381

OR: 1.06 (0.92–1.21)
p-value = 0.416

Fatty liver index OR: 1.00 (0.94–1.06)
p-value = 0.951

OR: 0.89 (0.68–1.16)
p-value = 0.386

OR: 1.06 (1.03–1.10)
p-value < 0.001 *

Mean arterial blood
pressure (mm Hg)

OR: 1.02 (0.94–1.11)
p-value = 0.688

OR: 0.96 (0.86–1.06)
p-value = 0.403

OR: 1.03 (0.98–1.08)
p-value = 0.253

Fasting insulin (mU/L) OR: 1.04 (0.96–1.14)
p-value = 0.317

OR: 1.05 (0.95–1.15)
p-value = 0.359

OR: 1.08 (1.01–1.16)
p-value = 0.019 *

Triglycerides/high density
lipoprotein cholesterol ratio

OR: 0.79 (0.13–4.76)
p-value = 0.797

OR: 1.42 (0.34–6.00)
p-value = 0.630

OR: 2.85 (1.30–6.21)
p-value = 0.009 *

Maternal height (cm) OR: 0.95 (0.84–1.07)
p-value = 0.363

OR: 0.91 (0.78–1.05)
p-value = 0.192

OR: 0.99 (0.93–1.06)
p-value = 0.794

Age (years) OR: 1.05 (0.86–1.29)
p-value = 0.629

OR: 0.97 (0.76–1.24)
p-value = 0.799

OR: 1.07 (0.95–1.20)
p-value = 0.267

Mid-upper arm
circumference (cm)

OR: 0.97 (0.82–1.15)
p-value = 0.737

OR: 0.90 (0.71–1.14)
p-value = 0.362

OR: 1.22 (1.12–1.33)
p-value < 0.001 *

BMI (kg/m2) OR: 1.00 (0.88–1.16)
p-value = 0.914

OR: 0.84 (0.64–1.10)
p-value = 0.206

OR: 1.18 (1.09–1.27)
p-value < 0.001 *

Parity OR: 1.75 (0.49–6.25)
p-value = 0.387

OR: 1.29 (0.28–5.90)
p-value = 0.746

OR: 1.89 (0.90–3.95)
p-value = 0.091

Self-reported alcohol
consumption

OR: 0.38 (0.11–1.35)
p-value = 0.134

OR: 2.47 (0.29–20.97)
p-value = 0.407

OR: 0.44 (0.21–0.94)
p-value = 0.033 *

Family history of diabetes
mellitus

OR: 1.73 (0.47–6.35)
p-value = 0.409

OR: 1.91 (0.41–8.78)
p-value = 0.407

OR: 1.95 (0.92–4.17)
p-value = 0.083

Chinese vs. Malay/Indian
ethnicity

OR: 0.59 (0.15–2.39)
p-value = 0.463

OR: 0.33 (0.07–1.51)
p-value = 0.152

OR: 0.55 (0.24–1.26)
p-value = 0.158

Feature

Preterm Birth
(n = 185)

OR (95% CI)
p-value

HbA1c (mmol/mol) ˆ OR: 1.63 (1.12–2.38)
p-value = 0.011 *
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Table 4. Cont.

Feature

Preterm Birth
(n = 222)

Low Birthweight at Term
(n = 216)

Large for Gestational Age
Infant

(n = 216)

OR (95% CI)
p-Value

OR (95% CI)
p-Value

OR (95% CI)
p-Value

Feature

Preterm Birth
(n = 154)

OR (95% CI)
p-value

HbA1c (mmol/mol) #,ˆ OR: 1.75 (1.14–2.67)
p-value = 0.010 *

Feature

Large for Gestational Age Infant
(n = 198)

OR (95% CI)
p-value

Fatty liver index ˆ OR: 1.02 (0.96–1.08)
p-value = 0.473

Feature

Large for Gestational Age Infant
(n = 198)

OR (95% CI)
p-value

Fasting insulin (mU/L) ˆ OR: 1.01 (0.92–1.10)
p-value = 0.825

Feature

Large for Gestational Age Infant
(n = 198)

OR (95% CI)
p-value

Triglycerides/high density
lipoprotein cholesterol
ratio ˆ

OR: 1.98 (0.76–5.10)
p-value = 0.160

Feature

Large for Gestational Age Infant
(n = 198)

OR (95% CI)
p-value

Mid-upper arm
circumference (cm) ˆ

OR: 1.21 (0.93–1.58)
p-value = 0.162

Feature

Large for Gestational Age Infant
(n = 198)

OR (95% CI)
p-value

BMI (kg/m2) ~ OR: 1.20 (1.10–1.31)
p-value < 0.001 *

Feature

Large for Gestational Age Infant
(n = 198)

OR (95% CI)
p-value

Self-reported alcohol
consumption ˆ

OR: 0.47 (0.17–1.28)
p-value = 0.138

* Statistically significant feature. ˆ Adjusted for maternal ethnicity, age, parity, family history of diabetes mellitus,
pre-pregnancy BMI, GDM diagnosis, total gestational weight gain (derived by subtracting first antenatal visit
weight from last antenatal visit weight) and child sex. ~ Adjusted for maternal ethnicity, age, parity, family history
of diabetes mellitus, GDM diagnosis, total gestational weight gain (derived by subtracting first antenatal visit
weight from last antenatal visit weight) and child sex. # After excluding 11 women with prediabetes (impaired
glucose tolerance) based on preconception OGTT.

After excluding women with prediabetes, the associations between preconception
HbA1c and a GDM outcome (p = 0.003, OR: 1.32 (1.10–1.59)) and with a preterm birth
outcome (p = 0.010, OR: 1.75 (1.14–2.67)) were not materially changed.

4. Discussion
Primary Findings

We built an effective preconception-based GDM predictor by integrating game theory
concepts with evolutionary algorithm-based AutoML. Our proposed AutoML model was
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derived using genetic programming and achieved an excellent AUC of 0.93 with four
features (HbA1c, mean arterial blood pressure, fasting insulin, TG/HDL ratio). A stacked
ensemble model with the gradient boosting classifier and linear support vector machine
classifier (stochastic gradient descent training) was the best machine learning pipeline
evaluated by TPOT. The preconception predictive risk model can be leveraged as a risk
stratification tool during preconception care to identify Asian women at high risk of
developing GDM, enabling early intervention. Alternatively, our non-invasive model
trained with nine features (mean arterial blood pressure, height, age, mid-upper arm
circumference, BMI, parity, alcohol consumption, family history of diabetes, Chinese
ethnicity) provides an alternative for clinical implementation if blood-derived markers are
unavailable (AUC: 0.81).

Population-based research on preconception HbA1c and its relationship/association
with GDM and adverse birth outcomes remains limited. In our study, HbA1c was the top
predictive feature discovered from AutoML feature selection modeling. The physiological
variation in HbA1c can be attributed to increased red cell turnover during pregnancy
with new erythrocytes exposed to a lower time-averaged glucose concentration [32] and
decreasing insulin sensitivity with increasing gestation [33].

In the fully adjusted logistic regression model (adjusted for maternal ethnicity, age,
parity, family history of diabetes mellitus and pre-pregnancy BMI), preconception HbA1c
was associated with increased risks of GDM. Preconception HbA1c alone had a high predic-
tive performance in the AutoML model (AUC: 0.81). Similarly in the sensitivity analyses,
the predictive performance of the AutoML model was stronger with preconception HbA1c
(AUC: 0.93) than preconception fasting glucose (AUC: 0.87), implying that early GDM
risk stratification can be significantly improved with the inclusion of preconception HbA1c
over preconception fasting glucose. Moreover, HbA1c offers greater clinical convenience
than fasting glucose as there is no fasting requirement, less biological variation and greater
pre-analytical stability [34]. As HbA1c is a measure of how glucose has interacted with ery-
throcytes up to a three-month period [35], our findings suggest that women who develop
GDM may have impaired glucose homeostasis prior to pregnancy itself.

The clinical usefulness of preconception HbA1c can be extended to adverse pregnancy
outcomes. In a Swedish study by Ludvigsson et al. [36], women with periconceptional
HbA1c levels within recommended target levels (HbA1c < 6.5%) were at increased risk of
preterm delivery. The risk of early preterm birth increased with increasing HbA1c levels
in normal pregnancies and among women with type 1 diabetes [36]. Our study provides
further evidence that preconception HbA1c is an independent risk factor for preterm birth.
In the fully adjusted logistic regression model (adjusted for maternal ethnicity, age, parity,
family history of diabetes mellitus, pre-pregnancy BMI, GDM diagnosis, total gestational
weight gain and child sex), preconception HbA1c was associated with increased risks of
preterm birth. Associations between preconception HbA1c and GDM and preterm birth
were not materially changed after excluding women with prediabetes, indicating that
preconception HbA1c is a reliable marker in predicting GDM/preterm birth even within
normal HbA1c range.

Blood pressure changes between preconception and pregnancy are underexplored
in the literature. In our study, mean arterial blood pressure feature was another critical
component of the AutoML model. Although mean arterial blood pressure at preconcep-
tion was not associated with GDM outcome, the linkage between preconception blood
pressure and physiological changes associated with pregnancy complications warrants
further investigation.

The TG/HDL ratio is a surrogate marker for insulin resistance and was one of the
top five features in the AutoML feature selection model. GDM is a condition of increased
insulin resistance, and this shifts the balance of lipid processing as reflected by the TG/HDL
ratio [37,38]. The four features in AutoML modeling for GDM prediction (HbA1c, mean
arterial blood pressure, fasting insulin and TG/HDL ratio) discovered through genetic
programming are suggestive of transient insulin resistance at preconception and reflect the
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women’s pre-existing metabolic physiology, which clearly has a bearing on the women’s
ability to amount an appropriate metabolic adaptation to pregnancy in response to signals
from the conceptus to ensure a successful pregnancy. Dysfunctional metabolic adaptation
can thus lead to gestational diabetes and preterm birth.

5. Limitations

This study has some limitations due to scarcity of longitudinal data. Our AutoML
model was trained on a limited S-PRESTO cohort of 222 preconception women. However,
the prospective S-PRESTO data capture complex clinical pathways during pregnancy
initiation and are less prone to differential measurement errors. A sub-cohort analyses by
individual ethnic groups can be trained with larger clinical datasets such as the electronic
health records. No replication cohort was available, and our proposed model should
be evaluated in confirmatory studies. The four features in AutoML modeling for GDM
prediction need to be evaluated in an early pregnancy cohort for generalizability.

Comparison with Prior Work

The implementation of our GDM risk prediction algorithm during preconception
care would enable early engagement of women for preventive intervention, compared to
existing pregnancy-based GDM risk prediction algorithms [14,15] developed for antenatal
care. In another recent study by Wu et al. [39], an early pregnancy prediction model for
GDM was developed based on genetic variants (four genetic susceptible single nucleotide
polymorphisms (SNPs)) and six basic clinical features (AUC: 0.73). The latter model
requires more advanced laboratory testing for SNPs, which may not be routinely available
in all standard clinical laboratories. Xiong et al. [40] developed high performance machine
learning models with the linear support vector machine classifier and LightGBM gradient
boosting classifier using 10–19 weeks’ gestation data (AUC: 0.91–0.98), which may be
too late for effective GDM interventions. With four basic clinical features measured at
preconception and high prediction performance of AUC: 0.93, our stacked ensemble model
with the gradient boosting classifier and linear support vector machine classifier (stochastic
gradient descent training) offers a simpler solution for early GDM prediction.

6. Conclusions

Leveraging AI and evolutionary algorithms, we devised a population-based predictive
care solution to assess the risk of developing GDM in preconception of Asian women. An
optimal control of preconception HbA1c has the potential to lower the risk of GDM and
reduce the incidence of preterm birth. Our trained classifier has been deployed in a web
application for GDM prevention programs and intervention with early-stage nutritional
and lifestyle changes during preconception care. The GDM predictor can also be combined
with a digital health intervention such as a smartphone application.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/ijerph19116792/s1, File S1: Introduction to Genetic Programming;
Table S1: Sensitivity analysis of preconception predictive risk model.

Author Contributions: M.K. contributed to research study design, machine learning modeling,
statistical analyses, interpretation of results and writing of the manuscript. L.T.A., H.P. and M.N.
contributed to clinical data curation. K.T. contributed to the acquisition, curation of biochemistry
data and critical reading of the manuscript. S.L.L. contributed to collection of phenotypic data in
S-PRESTO cohort and critical reading of the manuscript. K.H.T., J.K.Y.C., K.M.G., S.-y.C. and Y.S.C.
contributed to S-PRESTO cohort study design, data collection and critical reading of the manuscript.
J.G.E. contributed to interpretation of results, writing of the manuscript and S-PRESTO cohort data
collection. M.F. contributed to supervision of the study, interpretation of results and writing of the
manuscript. N.K. contributed to supervision of the study, interpretation of results, writing of the
manuscript and S-PRESTO cohort study data collection. M.F. and N.K. accept full responsibility for
the work, had access to the data and controlled the decision to publish. All authors have read and
agreed to the published version of the manuscript.

https://www.mdpi.com/article/10.3390/ijerph19116792/s1
https://www.mdpi.com/article/10.3390/ijerph19116792/s1


Int. J. Environ. Res. Public Health 2022, 19, 6792 15 of 17

Funding: The S-PRESTO cohort study is supported by the National Research Foundation (NRF) under
the Open Fund-Large Collaborative Grant No. OF-LCG; MOH-000504 administered by the Singapore
Ministry of Health’s National Medical Research Council (NMRC) and the Agency for Science, Technol-
ogy and Research (A*STAR). This research is supported by NMRC’s Open Fund—Large Collaborative
Grant, titled ‘Metabolic Health in Asian Women and their Children’ (award no. OFLCG19may-0033).
K.M.G. is supported by the UK Medical Research Council (MC_UU_12011/4), the National Insti-
tute for Health Research (NIHR Senior Investigator (NF-SI-0515-10042) and NIHR Southampton
Biomedical Research Centre (IS-BRC-1215-20004)) and the British Heart Foundation (RG/15/17/3174).
Additional funds for data analysis were supported by the Strategic Positioning Fund and IAFpp
funds (H17/01/a0/005) available to N.K. through A*STAR (award number SPF 002/2013).

Institutional Review Board Statement: The study was conducted according to the guidelines of
the Declaration of Helsinki and reviewed by SingHealth Centralised Institutional Review Board for
ethical approval (CIRB Ref: 2014/692/D, 19 September 2014).

Informed Consent Statement: Informed consent was obtained from all subjects involved in the
study for use of human biological material and data for future research.

Data Availability Statement: The data supporting the findings of this research can be requested from
the S-PRESTO executive committee upon reasonable request. The code generated to reproduce this
research is available at GitHub page: https://github.com/mukkeshkumar/S-PRESTO_Gestational-
Diabetes-Mellitus. The AutoML model has been deployed as a web application and can be accessed
through the following URL: https://www.mornin-feng.com/all-projects-and-demos#gdm3.

Acknowledgments: We thank the S-PRESTO study team for their help in acquiring the research data
and their crucial work with the participants.

Conflicts of Interest: N.K., K.M.G., S.-y.C. and Y.S.C. are part of an academic consortium that has
received research funding from Abbott Nutrition, Nestec, BenevolentAI Bio Ltd. and Danone. MF
was partially supported by the National Research Foundation Singapore under its AI Singapore
Programme (award number: AISG-GC-2019-001-2A). Other authors declare no conflict of interest.

References
1. International Diabetes Federation. IDF Diabetes Atlas, 9th ed.; International Diabetes Federation: Brussels, Belgium, 2019.
2. Metzger, B.E.; Coustan, D.R. Summary and recommendations of the Fourth International Workshop-Conference on Gestational

Diabetes Mellitus. Diabetes Care 1998, 21, B161–B167. [PubMed]
3. American Diabetes Association. Gestational Diabetes Mellitus. Diabetes Care 2003, 26, s103–s105. [CrossRef] [PubMed]
4. Vounzoulaki, E.; Khunti, K.; Abner, S.C.; Tan, B.K.; Davies, M.J.; Gillies, C.L. Progression to type 2 diabetes in women with a

known history of gestational diabetes: Systematic review and meta-analysis. BMJ 2020, 369, m1361. [CrossRef]
5. Kramer, C.K.; Campbell, S.; Retnakaran, R. Gestational diabetes and the risk of cardiovascular disease in women: A systematic

review and meta-analysis. Diabetologia 2019, 62, 905–914. [CrossRef]
6. Chu, A.H.Y.; Godfrey, K.M. Gestational Diabetes Mellitus and Developmental Programming. Ann. Nutr. Metab. 2020, 76, 4–15.

[CrossRef]
7. American Diabetes Association. Classification and Diagnosis of Diabetes: Standards of Medical Care in Diabetes—2020. Diabetes

Care 2020, 43, S14–S31. [CrossRef]
8. National Institute for Health and Care Excellence. Diabetes in Pregnancy: Management from Preconception to the Postnatal Period;

National Institute for Health and Care Excellence: London, UK, 2015.
9. International Diabetes Federation. IDF GDM Model of Care; International Diabetes Federation: Brussels, Belgium, 2015.
10. Moholdt, T.; Hawley, J.A. Maternal Lifestyle Interventions: Targeting Preconception Health. Trends Endocrinol. Metab. 2020, 31,

561–569. [CrossRef]
11. Stephenson, J.; Heslehurst, N.; Hall, J.; Schoenaker, D.A.J.M.; Hutchinson, J.; Cade, J.E.; Poston, L.; Barrett, G.; Crozier, S.R.;

Barker, M.; et al. Before the beginning: Nutrition and lifestyle in the preconception period and its importance for future health.
Lancet 2018, 391, 1830–1841. [CrossRef]

12. Fleming, T.P.; Watkins, A.J.; Velazquez, M.A.; Mathers, J.C.; Prentice, A.M.; Stephenson, J.; Barker, M.; Saffery, R.; Yajnik, C.S.;
Eckert, J.J.; et al. Origins of lifetime health around the time of conception: Causes and consequences. Lancet 2018, 391, 1842–1852.
[CrossRef]

13. Barker, M.; Dombrowski, S.U.; Colbourn, T.; Fall, C.H.D.; Kriznik, N.M.; Lawrence, W.T.; Norris, S.A.; Ngaiza, G.; Patel, D.;
Skordis-Worrall, J.; et al. Intervention strategies to improve nutrition and health behaviours before conception. Lancet 2018, 391,
1853–1864. [CrossRef]

https://github.com/mukkeshkumar/S-PRESTO_Gestational-Diabetes-Mellitus
https://github.com/mukkeshkumar/S-PRESTO_Gestational-Diabetes-Mellitus
https://www.mornin-feng.com/all-projects-and-demos#gdm3
http://www.ncbi.nlm.nih.gov/pubmed/9704245
http://doi.org/10.2337/diacare.26.2007.S103
http://www.ncbi.nlm.nih.gov/pubmed/12502631
http://doi.org/10.1136/bmj.m1361
http://doi.org/10.1007/s00125-019-4840-2
http://doi.org/10.1159/000509902
http://doi.org/10.2337/dc20-S002
http://doi.org/10.1016/j.tem.2020.03.002
http://doi.org/10.1016/S0140-6736(18)30311-8
http://doi.org/10.1016/S0140-6736(18)30312-X
http://doi.org/10.1016/S0140-6736(18)30313-1


Int. J. Environ. Res. Public Health 2022, 19, 6792 16 of 17

14. Artzi, N.S.; Shilo, S.; Hadar, E.; Rossman, H.; Barbash-Hazan, S.; Ben-Haroush, A.; Balicer, R.D.; Feldman, B.; Wiznitzer, A.;
Segal, E. Prediction of gestational diabetes based on nationwide electronic health records. Nat. Med. 2020, 26, 71–76. [CrossRef]
[PubMed]

15. Wu, Y.-T.; Zhang, C.-J.; Mol, B.W.; Kawai, A.; Li, C.; Chen, L.; Wang, Y.; Sheng, J.-Z.; Fan, J.-X.; Shi, Y.; et al. Early Prediction of
Gestational Diabetes Mellitus in the Chinese Population via Advanced Machine Learning. J. Clin. Endocrinol. Metab. 2020, 106,
e1191–e1205. [CrossRef] [PubMed]

16. Loo, E.X.L.; Soh, S.E.; Loy, S.L.; Ng, S.; Tint, M.T.; Chan, S.Y.; Huang, J.Y.; Yap, F.; Tan, K.H.; Chern, B.S.M.; et al. Cohort profile:
Singapore Preconception Study of Long-Term Maternal and Child Outcomes (S-PRESTO). Eur. J. Epidemiol. 2021, 36, 129–142.
[CrossRef] [PubMed]

17. World Health Organization. Diagnostic Criteria and Classification of Hyperglycaemia First Detected in Pregnancy; World Health
Organization: Geneva, Switzerland, 2013.

18. World Health Organization; International Diabetes Federation (IDF). Definition and Diagnosis of Diabetes Mellitus and Intermediate
Hyperglycaemia; World Health Organization: Geneva, Switzerland; International Diabetes Federation: Brussels, Belgium, 2006.

19. World Health Organization. Use of Glycated Haemoglobin (HbA1c) in the Diagnosis of Diabetes Mellitus; World Health Organization:
Geneva, Switzerland, 2011.

20. Ding, C.; Chan, Z.; Chooi, Y.C.; Choo, J.; Sadananthan, S.A.; Michael, N.; Velan, S.S.; Leow, M.K.-S.; Magkos, F. Association
between Serum Vitamin D Metabolites and Metabolic Function in Healthy Asian Adults. Nutrients 2020, 12, 3706. [CrossRef]
[PubMed]

21. Matthews, D.R.; Hosker, J.P.; Rudenski, A.S.; Naylor, B.A.; Treacher, D.F.; Turner, R.C. Homeostasis model assessment: Insulin
resistance and β-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 1985, 28, 412–419.
[CrossRef]

22. Reaven, G.; Strom, T.K.; Fox, B. Syndrome X, The Silent Killer: The New Heart Disease Risk; Simon and Schuster: New York, NY,
USA, 2001.

23. Bedogni, G.; Bellentani, S.; Miglioli, L.; Masutti, F.; Passalacqua, M.; Castiglione, A.; Tiribelli, C. The Fatty Liver Index: A simple
and accurate predictor of hepatic steatosis in the general population. BMC Gastroenterol. 2006, 6, 33. [CrossRef]

24. Health Promotion Board, Metabolic Syndrome. Available online: https://www.hpb.gov.sg/article/metabolic-syndrome (accessed
on 7 March 2022).

25. Eiben, A.E.; Smith, J.E. Introduction to Evolutionary Computing; Springer: Berlin/Heidelberg, Germany, 2003; Volume 53.
26. Banzhaf, W.; Nordin, P.; Keller, R.E.; Francone, F.D. Genetic Programming: An Introduction: On the Automatic Evolution of Computer

Programs and Its Applications; Morgan Kaufmann Publishers Inc.: Burlington, MA, USA, 1998.
27. Lundberg, S.M.; Erion, G.; Chen, H.; DeGrave, A.; Prutkin, J.M.; Nair, B.; Katz, R.; Himmelfarb, J.; Bansal, N.; Lee, S.-I. From local

explanations to global understanding with explainable AI for trees. Nat. Mach. Intell. 2020, 2, 56–67. [CrossRef]
28. Le, T.T.; Fu, W.; Moore, J.H. Scaling tree-based automated machine learning to biomedical big data with a feature set selector.

Bioinformatics 2019, 36, 250–256. [CrossRef]
29. WHO. Recommended definitions, terminology and format for statistical tables related to the perinatal period and use of a new

certificate for cause of perinatal deaths. Modifications recommended by FIGO as amended October 14, 1976. Acta Obstet. Gynecol.
Scand. 1977, 56, 247–253.

30. Soh, S.-E.; Tint, M.T.; Gluckman, P.D.; Godfrey, K.M.; Rifkin-Graboi, A.; Chan, Y.H.; Stünkel, W.; Holbrook, J.D.; Kwek, K.; Chong,
Y.-S.; et al. Cohort Profile: Growing Up in Singapore Towards healthy Outcomes (GUSTO) birth cohort study. Int. J. Epidemiol.
2013, 43, 1401–1409. [CrossRef]

31. Mikolajczyk, R.T.; Zhang, J.; Betran, A.P.; Souza, J.P.; Mori, R.; Gülmezoglu, A.M.; Merialdi, M. A global reference for fetal-weight
and birthweight percentiles. Lancet 2011, 377, 1855–1861. [CrossRef]

32. Lurie, S.; Mamet, Y. Red blood cell survival and kinetics during pregnancy. Eur. J. Obstet. Gynecol. Reprod. Biol. 2000, 93, 185–192.
[CrossRef]

33. Catalano, P.M.; Huston, L.; Amini, S.B.; Kalhan, S. Longitudinal changes in glucose metabolism during pregnancy in obese
women with normal glucose tolerance and gestational diabetes mellitus. Am. J. Obstet. Gynecol. 1999, 180, 903–916. [CrossRef]

34. Bonora, E.; Tuomilehto, J. The Pros and Cons of Diagnosing Diabetes With A1C. Diabetes Care 2011, 34, S184–S190. [CrossRef]
[PubMed]

35. van’t Riet, E.; Alssema, M.; Rijkelijkhuizen, J.M.; Kostense, P.J.; Nijpels, G.; Dekker, J.M. Relationship between A1C and glucose
levels in the general Dutch population: The new Hoorn study. Diabetes Care 2010, 33, 61–66. [CrossRef]

36. Ludvigsson, J.F.; Neovius, M.; Söderling, J.; Gudbjörnsdottir, S.; Svensson, A.M.; Franzén, S.; Stephansson, O.; Pasternak, B.
Maternal Glycemic Control in Type 1 Diabetes and the Risk for Preterm Birth: A Population-Based Cohort Study. Ann. Intern.
Med. 2019, 170, 691–701. [CrossRef]

37. An-Na, C.; Man-Li, Y.; Jeng-Hsiu, H.; Pesus, C.; Shin-Kuo, S.; Heung-Tat, N. Alterations of serum lipid levels and their biological
relevances during and after pregnancy. Life Sci. 1995, 56, 2367–2375. [CrossRef]

38. Toescu, V.; Nuttall, S.L.; Martin, U.; Nightingale, P.; Kendall, M.J.; Brydon, P.; Dunne, F. Changes in plasma lipids and markers of
oxidative stress in normal pregnancy and pregnancies complicated by diabetes. Clin. Sci. 2004, 106, 93–98. [CrossRef]

http://doi.org/10.1038/s41591-019-0724-8
http://www.ncbi.nlm.nih.gov/pubmed/31932807
http://doi.org/10.1210/clinem/dgaa899
http://www.ncbi.nlm.nih.gov/pubmed/33351102
http://doi.org/10.1007/s10654-020-00697-2
http://www.ncbi.nlm.nih.gov/pubmed/33222050
http://doi.org/10.3390/nu12123706
http://www.ncbi.nlm.nih.gov/pubmed/33266123
http://doi.org/10.1007/BF00280883
http://doi.org/10.1186/1471-230X-6-33
https://www.hpb.gov.sg/article/metabolic-syndrome
http://doi.org/10.1038/s42256-019-0138-9
http://doi.org/10.1093/bioinformatics/btz470
http://doi.org/10.1093/ije/dyt125
http://doi.org/10.1016/S0140-6736(11)60364-4
http://doi.org/10.1016/S0301-2115(00)00290-6
http://doi.org/10.1016/S0002-9378(99)70662-9
http://doi.org/10.2337/dc11-s216
http://www.ncbi.nlm.nih.gov/pubmed/21525453
http://doi.org/10.2337/dc09-0677
http://doi.org/10.7326/M18-1974
http://doi.org/10.1016/0024-3205(95)00230-4
http://doi.org/10.1042/CS20030175


Int. J. Environ. Res. Public Health 2022, 19, 6792 17 of 17

39. Wu, Q.; Chen, Y.; Zhou, M.; Liu, M.; Zhang, L.; Liang, Z.; Chen, D. An early prediction model for gestational diabetes mellitus
based on genetic variants and clinical characteristics in China. Diabetol. Metab. Syndr. 2022, 14, 15. [CrossRef]

40. Xiong, Y.; Lin, L.; Chen, Y.; Salerno, S.; Li, Y.; Zeng, X.; Li, H. Prediction of gestational diabetes mellitus in the first 19 weeks of
pregnancy using machine learning techniques. J. Matern. Neonatal Med. 2022, 35, 2457–2463. [CrossRef]

http://doi.org/10.1186/s13098-022-00788-y
http://doi.org/10.1080/14767058.2020.1786517

