17,299 research outputs found

    Density dependence of the pairing interaction and pairing correlation in unstable nuclei

    Full text link
    This work aims at a global assessment of the effect of the density dependence of the zero-range pairing interaction. Systematic Skyrme-Hartree-Fock-Bogoliubov calculations with the volume, surface and mixed pairing forces are carried out to study the pairing gaps in even-even nuclei over the whole nuclear chart. Calculations are also done in coordinate representation for unstable semi-magic even-even nuclei. The calculated pairing gaps are compared with empirical values from four different odd-even staggering formulae. Calculations with the three pairing interactions are comparable for most nuclei close to β\beta-stability line. However, the surface interaction calculations predict neutron pairing gaps in neutron-rich nuclei that are significantly stronger than those given by the mixed and volume pairing. On the other hand, calculations with volume and mixed pairing forces show noticeable reduction of neutron pairing gaps in nuclei far from the stability.Comment: 9 pages, 10 figures, 3 tables, printer-friendl

    Bipolar current driver for memory circuits

    Get PDF
    Circuit which logically determines the state of a flip-flop and amplifies the current from a clock pulse provides a bipolar driving current to a memory circuit, the polarity of which is determined by the state of a flip-flop. This principle may be applied to various memory driving circuits where power dissipation must be minimized

    Flipflop interrogator and bi-polar current driver Patent

    Get PDF
    Interrogator and current driver circuit for combination with transistor flip-flop circui

    Correlation properties of interfering electrons in a mesoscopic ring under nonclassical microwave radiation

    Get PDF
    Original paper can be found at: http://eproceedings.worldscinet.com/ Copyright World Scientific Publishing Co. DOI: 10.1142/9789812704474_0009Interfering electrons in a mesoscopic ring are irradiated with both classical and nonclassical microwaves. The average intensity of the charges is calculated as a function of time and it is found that it depends on the nature of the irradiating electromagnetic field. For various quantum states of the microwaves, the electron autocorrelation function is calculated and it shows that the quantum noise of the external field affects the interference of the charges. Two-mode entangled microwaves are also considered and the results for electron average intensity and autocorrelation are compared with those of the corresponding separable state. In both cases, the results depend on whether the ratio of the two frequencies is rational or irrational.Peer reviewe

    Self-noise produced by an airfoil with nonflat plate trailing-edge serrations

    Get PDF
    This paper represents the results of an experimental study aimed at reducing the airfoil self-noise by the trailing edge serration of four different sawtooth geometries (defined in the serration angle and length). These serrations have a common feature: all of the sawtooth patterns are cut directly into the trailing edge of a realistic airfoil. This configuration offers better structural strength and integrity. For the sawtooth trailing edges investigated here, the radiation of the extraneous vortex shedding noise in a narrowband frequency due to the partial bluntness at the serration roots is unavoidable. However, this narrowband component tends to be less significant provided that the serration angle is large and the serration length is moderate. Sound power was measured, and some of the sawtooth geometries have been shown to afford significant boundary-layer instability tonal noise and moderate turbulent broadband noise reductions across a fairly large velocity range. This paper demonstrates that a nonflat plate serrated trailing edge can also be effective in the self-noise reduction. Some experimental results are also presented in order to explain the self-noise mechanisms.This work is partly supported by the Brunel Research Initiative and Enterprise fun

    Conservation relations and anisotropic transmission resonances in one-dimensional PT-symmetric photonic heterostructures

    Full text link
    We analyze the optical properties of one-dimensional (1D) PT-symmetric structures of arbitrary complexity. These structures violate normal unitarity (photon flux conservation) but are shown to satisfy generalized unitarity relations, which relate the elements of the scattering matrix and lead to a conservation relation in terms of the transmittance and (left and right) reflectances. One implication of this relation is that there exist anisotropic transmission resonances in PT-symmetric systems, frequencies at which there is unit transmission and zero reflection, but only for waves incident from a single side. The spatial profile of these transmission resonances is symmetric, and they can occur even at PT-symmetry breaking points. The general conservation relations can be utilized as an experimental signature of the presence of PT-symmetry and of PT-symmetry breaking transitions. The uniqueness of PT-symmetry breaking transitions of the scattering matrix is briefly discussed by comparing to the corresponding non-Hermitian Hamiltonians.Comment: 10 pages, 10 figure

    Stochastic expansions using continuous dictionaries: L\'{e}vy adaptive regression kernels

    Get PDF
    This article describes a new class of prior distributions for nonparametric function estimation. The unknown function is modeled as a limit of weighted sums of kernels or generator functions indexed by continuous parameters that control local and global features such as their translation, dilation, modulation and shape. L\'{e}vy random fields and their stochastic integrals are employed to induce prior distributions for the unknown functions or, equivalently, for the number of kernels and for the parameters governing their features. Scaling, shape, and other features of the generating functions are location-specific to allow quite different function properties in different parts of the space, as with wavelet bases and other methods employing overcomplete dictionaries. We provide conditions under which the stochastic expansions converge in specified Besov or Sobolev norms. Under a Gaussian error model, this may be viewed as a sparse regression problem, with regularization induced via the L\'{e}vy random field prior distribution. Posterior inference for the unknown functions is based on a reversible jump Markov chain Monte Carlo algorithm. We compare the L\'{e}vy Adaptive Regression Kernel (LARK) method to wavelet-based methods using some of the standard test functions, and illustrate its flexibility and adaptability in nonstationary applications.Comment: Published in at http://dx.doi.org/10.1214/11-AOS889 the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org
    • …
    corecore